“require that self-improving software require human intervention to move forward on each iteration”
is the unspoken distinction occurring here, how constant the feedback loop is for self-improvement.
So, people talk about recursive self-improvement, but mean two separate things, one is recursive self-improving models that require no human intervention to move forward on each iteration (perhaps there no longer is an iterative release process, the model is dynamic and constantly improving), and the other is somewhat the current step paradigm where we get a GPT-N+1 model that is 100x the effective compute of GPT-N.
So Sam says, no way do we want a constant curve of improvement, we want a step function. In both cases models contribute to AI research, in one case it contributes to the next gen, in the other case it improves itself.
I have a guess that this:
“require that self-improving software require human intervention to move forward on each iteration”
is the unspoken distinction occurring here, how constant the feedback loop is for self-improvement.
So, people talk about recursive self-improvement, but mean two separate things, one is recursive self-improving models that require no human intervention to move forward on each iteration (perhaps there no longer is an iterative release process, the model is dynamic and constantly improving), and the other is somewhat the current step paradigm where we get a GPT-N+1 model that is 100x the effective compute of GPT-N.
So Sam says, no way do we want a constant curve of improvement, we want a step function. In both cases models contribute to AI research, in one case it contributes to the next gen, in the other case it improves itself.