Forecasting is hard. Maybe conventional LEDs wouldn’t be that easy, but there may be other approaches superior to excimer lamps we could use for pathogen control. Only one of them has to work, making this a disjunctive claim. For example, frequency-doubling solid-state lasers can kick blue light up to the UVC range. Also, quantum dots can be tuned very precisely, even without changing the component materials.
Can quantum dots emit light at intensities sufficient to disinfect a room? I always see them made and used on the nanoscale. And can a laser be wide enough so that you could make a “laser sheet” to disinfect any air that passes through it? Otherwise it seems like quantum dots are too small and lasers are too focused to work. But I am not an optics person.
Lasers can be widened with optics, like curved reflectors. Fiber could potentially distribute an intense source to multiple endpoints, although UVC would require the use of special materials. I’m not an optics specialist either. I don’t know of quantum dots in the UVC range, maybe it hasn’t been done yet. For visible wavelengths they can be pretty bright, so maybe? I don’t think these alternatives exist yet, but so many approaches seem potentially viable that I’m not sure it will take ten years.
Forecasting is hard. Maybe conventional LEDs wouldn’t be that easy, but there may be other approaches superior to excimer lamps we could use for pathogen control. Only one of them has to work, making this a disjunctive claim. For example, frequency-doubling solid-state lasers can kick blue light up to the UVC range. Also, quantum dots can be tuned very precisely, even without changing the component materials.
Can quantum dots emit light at intensities sufficient to disinfect a room? I always see them made and used on the nanoscale. And can a laser be wide enough so that you could make a “laser sheet” to disinfect any air that passes through it? Otherwise it seems like quantum dots are too small and lasers are too focused to work. But I am not an optics person.
Lasers can be widened with optics, like curved reflectors. Fiber could potentially distribute an intense source to multiple endpoints, although UVC would require the use of special materials. I’m not an optics specialist either. I don’t know of quantum dots in the UVC range, maybe it hasn’t been done yet. For visible wavelengths they can be pretty bright, so maybe? I don’t think these alternatives exist yet, but so many approaches seem potentially viable that I’m not sure it will take ten years.