I don’t know of a formal analysis, but informally it seems that it will be much easier to enforce far-UVC than ventilation. People don’t like ventilation because it makes them cold or costs money, so they will tend to shut it off when they think they can get away with it.
Far-UVC is invisible and won’t cost much compared to heating costs.
I also suspect that it’s inherently more effective at the right doses because ventilation can’t really stop transmission, only reduce the rate somewhat, so there will still be transmission and we may eventually find a pathogen that is contagious enough to still cause problems.
Ventilation costs can be reduced almost by an order of magnitude using enthalpy recovery systems, which have an upfront capital cost though.
There are additional benefits that helps mitigate that though, such as more alert staff due to lower CO2 concentrations, lower VOC levels from off gassing materials, better humidity control to keep indoor humidity in the optimal zone, etc.
I’m not entirely convinced that UVC systems can be procured and installed cheap enough to be obviously better in 100% of hospitals.
Enthalpy recovery systems really seem like they should be implemented everywhere. Given the benefits for both climate change prevention, pandemic preparedness, mold prevention, VOC health benefits, nightly sound pollution, and cognitive performance via lower CO2 in the room the case seems to me to be very strong. In the European case, reducing dependency on gas is also a nice side effect.
I’m not entirely convinced that UVC systems can be procured and installed cheap enough to be obviously better in 100% of hospitals.
In a hospital setting, you likely care about any additional reduction in hospital-acquired infections. If there’s clear evidence that you can reduce hospital-acquired infections this way, hospitals that don’t adopt the technology can have a problem. You can sue them for malpractice if you get a hospital-acquired infection and they didn’t implement all interventions that can reasonably be used to prevent the infection.
Agree that indoor air systems are an obvious health benefit, but re: hospitals, it’s only malpractice if using the systems is considered standard of care, which requires more than just evidence of efficacy. That said, I suspect that once the evidence is in, unless there is a new safety concern, it will start to get used in most hospitals very quickly, and become the standard of care.
I don’t know of a formal analysis, but informally it seems that it will be much easier to enforce far-UVC than ventilation. People don’t like ventilation because it makes them cold or costs money, so they will tend to shut it off when they think they can get away with it.
Far-UVC is invisible and won’t cost much compared to heating costs.
I also suspect that it’s inherently more effective at the right doses because ventilation can’t really stop transmission, only reduce the rate somewhat, so there will still be transmission and we may eventually find a pathogen that is contagious enough to still cause problems.
Ventilation costs can be reduced almost by an order of magnitude using enthalpy recovery systems, which have an upfront capital cost though.
There are additional benefits that helps mitigate that though, such as more alert staff due to lower CO2 concentrations, lower VOC levels from off gassing materials, better humidity control to keep indoor humidity in the optimal zone, etc.
I’m not entirely convinced that UVC systems can be procured and installed cheap enough to be obviously better in 100% of hospitals.
Enthalpy recovery systems really seem like they should be implemented everywhere. Given the benefits for both climate change prevention, pandemic preparedness, mold prevention, VOC health benefits, nightly sound pollution, and cognitive performance via lower CO2 in the room the case seems to me to be very strong. In the European case, reducing dependency on gas is also a nice side effect.
https://www.energyvanguard.com/blog/will-balanced-ventilation-be-required-code/ suggests that Aspen already put it into their building code.
In a hospital setting, you likely care about any additional reduction in hospital-acquired infections. If there’s clear evidence that you can reduce hospital-acquired infections this way, hospitals that don’t adopt the technology can have a problem. You can sue them for malpractice if you get a hospital-acquired infection and they didn’t implement all interventions that can reasonably be used to prevent the infection.
Agree that indoor air systems are an obvious health benefit, but re: hospitals, it’s only malpractice if using the systems is considered standard of care, which requires more than just evidence of efficacy. That said, I suspect that once the evidence is in, unless there is a new safety concern, it will start to get used in most hospitals very quickly, and become the standard of care.
Maybe in the U.S., but even then aren’t there lots of hospitals infamous for their low quality of care, high infection rate, etc.?
Why haven’t they all disappeared yet if it were so easy to sue hospitals into adopting superior practices?
It’s not. You need to show that they didn’t meet standard of care, and if no-one does it, it’s not actionable.