Are you mad? The lambda calculus is incredibly simple, and it would take maybe a few days to implement a very minimal Lisp dialect on top of raw (pure, non-strict, untyped) lambda calculus, and maybe another week or so to get a language distinctly more usable than, say, Java.
Turing Machines are a nice model for discussing the theory of computation, but completely and ridiculously non-viable as an actual method of programming; it’d be like programming in Brainfuck. It was von Neumann’s insights leading to the stored-program architecture that made computing remotely sensible.
There’s plenty of ridiculously opaque models of computation (Post’s tag machine, Conway’s Life, exponential Diophantine equations...) but I can’t begin to imagine one that would be more comprehensible than untyped lambda calculus.
I’m pretty sure that Eliezer meant that Turing machines are better for giving novices a “model of computation”. That is, they will gain a better intuitive sense of what computers can and can’t do. Your students might not be able to implement much, but their intuitions about what can be done will be better after just a brief explanation. So, if your goal is to make them less crazy regarding the possibilities and limitations of computers, Turing machines will give you more bang for your buck.
Are you mad? The lambda calculus is incredibly simple, and it would take maybe a few days to implement a very minimal Lisp dialect on top of raw (pure, non-strict, untyped) lambda calculus, and maybe another week or so to get a language distinctly more usable than, say, Java.
Turing Machines are a nice model for discussing the theory of computation, but completely and ridiculously non-viable as an actual method of programming; it’d be like programming in Brainfuck. It was von Neumann’s insights leading to the stored-program architecture that made computing remotely sensible.
There’s plenty of ridiculously opaque models of computation (Post’s tag machine, Conway’s Life, exponential Diophantine equations...) but I can’t begin to imagine one that would be more comprehensible than untyped lambda calculus.
I’m pretty sure that Eliezer meant that Turing machines are better for giving novices a “model of computation”. That is, they will gain a better intuitive sense of what computers can and can’t do. Your students might not be able to implement much, but their intuitions about what can be done will be better after just a brief explanation. So, if your goal is to make them less crazy regarding the possibilities and limitations of computers, Turing machines will give you more bang for your buck.