Hmmmm. I’m shamefully ignorant about prices, but I would estimate such an effort would be in the tens of millions, if you wanted it done quickly (and it will still take a while). As far as I’m aware we haven’t developed methods for transgenesis in Tetse flies, having only gotten the genome sequenced in 2014 (priorities people?!), and setting it up in a new organism in a new organism with an unusual life cycle can be surprisingly difficult. The link below describes techniques for manipulating gut microbes in the flies, which I don’t think would suffice.
In drosophila you can’t go from cell culture to an embryo easily like in mammals, you have to inject stuff into embryos and then breed from those embryos and hope some of your vector got into the germ line. In Tetse flies, I am now aware, the mother keeps the embryo until it’s quite developed, meaning the techniques used in Drosophila wouldn’t work, and we certainly don’t have any tetse cell lines, which I doubt would be of use anyway. So you’d be looking at developing a novel means of transgenesis. (Viral vector targetting the germ line maybe?? ) Which is a task that, while no doubt solvable, inevitably has big uncertainties in it.
So yes, tens of millions, give or take an order of magnitude, plus years and years of work. Well worth doing though. In my opinion the potential gains far outweigh the risks.
P.S. The link to ‘relevant risks’ you posted is broken, I’d be interested in seeing it.
I really appreciate the explanations in this thread. I was wondering if anyone had an update regarding recent developments in this space. Specifically, using big data to solve for genetic / protein links to phenotypes. I have also been struggling to find more recent information regarding genosets.
Apologies if any of that is unclear, I am still relatively new to this.
Hmmmm. I’m shamefully ignorant about prices, but I would estimate such an effort would be in the tens of millions, if you wanted it done quickly (and it will still take a while). As far as I’m aware we haven’t developed methods for transgenesis in Tetse flies, having only gotten the genome sequenced in 2014 (priorities people?!), and setting it up in a new organism in a new organism with an unusual life cycle can be surprisingly difficult. The link below describes techniques for manipulating gut microbes in the flies, which I don’t think would suffice.
In drosophila you can’t go from cell culture to an embryo easily like in mammals, you have to inject stuff into embryos and then breed from those embryos and hope some of your vector got into the germ line. In Tetse flies, I am now aware, the mother keeps the embryo until it’s quite developed, meaning the techniques used in Drosophila wouldn’t work, and we certainly don’t have any tetse cell lines, which I doubt would be of use anyway. So you’d be looking at developing a novel means of transgenesis. (Viral vector targetting the germ line maybe?? ) Which is a task that, while no doubt solvable, inevitably has big uncertainties in it.
So yes, tens of millions, give or take an order of magnitude, plus years and years of work. Well worth doing though. In my opinion the potential gains far outweigh the risks.
P.S. The link to ‘relevant risks’ you posted is broken, I’d be interested in seeing it.
I really appreciate the explanations in this thread. I was wondering if anyone had an update regarding recent developments in this space. Specifically, using big data to solve for genetic / protein links to phenotypes. I have also been struggling to find more recent information regarding genosets.
Apologies if any of that is unclear, I am still relatively new to this.