OP here. Having learned more statistics since I last posted—I reckon it could be as simple as exploring various interactions (effect modifications) in the data with respect to additional SNP’s. The issue would be that interactions require greater sample sizes to avoid spurious results and most genetics research has woefully low sample sizes which would only be harder to overcome when inching towards more personalised medicine based on individual genomes.
Yes that’s the case. To get enough data we probably need lots of in vitro experiments. Remember that data is not equal to information—even really big sample sizes wouldn’t be enough to resolve the combinatoric explosion. What I mean in that comment up there (I posted it before it was finished, I think) is that there are ~23k genes in the genome, so even under the absurdly simple assumption that there’s only one mutation possible per gene, you have half a billion possible combinations of gene breakages, which you will never ever be able to get enough of a sample size to look at blindly.
OP here. Having learned more statistics since I last posted—I reckon it could be as simple as exploring various interactions (effect modifications) in the data with respect to additional SNP’s. The issue would be that interactions require greater sample sizes to avoid spurious results and most genetics research has woefully low sample sizes which would only be harder to overcome when inching towards more personalised medicine based on individual genomes.
Yes that’s the case. To get enough data we probably need lots of in vitro experiments. Remember that data is not equal to information—even really big sample sizes wouldn’t be enough to resolve the combinatoric explosion. What I mean in that comment up there (I posted it before it was finished, I think) is that there are ~23k genes in the genome, so even under the absurdly simple assumption that there’s only one mutation possible per gene, you have half a billion possible combinations of gene breakages, which you will never ever be able to get enough of a sample size to look at blindly.