So I’m betting, before really thinking about it, that I can find something as microphysically absurd as “the north side of the flower.” How about “the mainland,” where humans use a weird ontology to draw the boundary in, that makes no sense to a non-human-centric ontology? Or parts based on analogy or human-centric function, like being able to talk about “the seat” of a chair that is just one piece of plastic.
On the Type 2 error side, there are also lots of local minima of “information passing through the boundary” that humans wouldn’t recognize. Like “the flower except for cell #13749788206.” Often, the boundary a human draws is a fuzzy fiction that only needs to get filled in as one looks more closely—maybe we want to include that cell if it goes on to replicate, but are fine with excluding it if it will die soon. But humans don’t think about this as a black box with Laplace’s Demon inside, they think about it as using future information to fill in this fuzzy boundary when we try to look at it closer.
I don’t think “the mainland” works as an example of human-centric-ontology (pretty sure the OP approach would consider that an object), but “seat of a chair” might, especially for chairs all made of one piece of plastic/metal. At the very least, it is clear that we can point to things which are not “natural” objects in the OP’s sense (e.g. a particular cubic meter of air), but then the question is: how do we define that object over time? In the chair example, my (not-yet-fully-thought-out) answer is that the chair is clearly a natural object, and we’re able to track the “seat” over time mainly because it’s defined relative to the chair. If the chair dramatically changes its form-factor, for instance, then there may no longer be a natural-to-a-human answer to the question “which part of this object is the seat?” (and if there is a natural answer, then it’s probably because the seat was a natural object to begin with, for instance maybe it’s a separate piece which can detach).
I do agree that there are tons of “objects” recognized by this method which are not recognized by humans—for instance, objects like cells, which we now recognize but once didn’t. But I think a general pattern is that, once we point to such an example, we think “yeah, that’s weird, but it’s definitely a well-defined object—e.g. I can keep track of it over time”. The flower-minus-one-cell is a good example of this: it’s not something a human would normally think of, but once you point to it, a human would recognize this as a well-defined thing and be able to keep track of it over time. If you draw a boundary around a flower and one cell within that flower, then ask me to identify the flower-minus-a-cell some time later, that’s a well-defined task which I (as a human) intuitively understand how to do.
I also agree that humans use different boundaries for different tasks and often switch to using other boundaries on the fly. In particular, I totally agree that there’s some laziness in figuring out where the boundaries go. This does not imply that object-notions are ever fuzzy, though—our objects can have sharply-defined referents even if we don’t have full information about that referent or if we’re switching between referents quite often. That’s what I think is mostly going on. E.g. in your cell-which-may-or-may-not-replicate example, there is a sharp boundary, we just don’t yet have the information to determine where that boundary is.
So I’m betting, before really thinking about it, that I can find something as microphysically absurd as “the north side of the flower.” How about “the mainland,” where humans use a weird ontology to draw the boundary in, that makes no sense to a non-human-centric ontology? Or parts based on analogy or human-centric function, like being able to talk about “the seat” of a chair that is just one piece of plastic.
On the Type 2 error side, there are also lots of local minima of “information passing through the boundary” that humans wouldn’t recognize. Like “the flower except for cell #13749788206.” Often, the boundary a human draws is a fuzzy fiction that only needs to get filled in as one looks more closely—maybe we want to include that cell if it goes on to replicate, but are fine with excluding it if it will die soon. But humans don’t think about this as a black box with Laplace’s Demon inside, they think about it as using future information to fill in this fuzzy boundary when we try to look at it closer.
I don’t think “the mainland” works as an example of human-centric-ontology (pretty sure the OP approach would consider that an object), but “seat of a chair” might, especially for chairs all made of one piece of plastic/metal. At the very least, it is clear that we can point to things which are not “natural” objects in the OP’s sense (e.g. a particular cubic meter of air), but then the question is: how do we define that object over time? In the chair example, my (not-yet-fully-thought-out) answer is that the chair is clearly a natural object, and we’re able to track the “seat” over time mainly because it’s defined relative to the chair. If the chair dramatically changes its form-factor, for instance, then there may no longer be a natural-to-a-human answer to the question “which part of this object is the seat?” (and if there is a natural answer, then it’s probably because the seat was a natural object to begin with, for instance maybe it’s a separate piece which can detach).
I do agree that there are tons of “objects” recognized by this method which are not recognized by humans—for instance, objects like cells, which we now recognize but once didn’t. But I think a general pattern is that, once we point to such an example, we think “yeah, that’s weird, but it’s definitely a well-defined object—e.g. I can keep track of it over time”. The flower-minus-one-cell is a good example of this: it’s not something a human would normally think of, but once you point to it, a human would recognize this as a well-defined thing and be able to keep track of it over time. If you draw a boundary around a flower and one cell within that flower, then ask me to identify the flower-minus-a-cell some time later, that’s a well-defined task which I (as a human) intuitively understand how to do.
I also agree that humans use different boundaries for different tasks and often switch to using other boundaries on the fly. In particular, I totally agree that there’s some laziness in figuring out where the boundaries go. This does not imply that object-notions are ever fuzzy, though—our objects can have sharply-defined referents even if we don’t have full information about that referent or if we’re switching between referents quite often. That’s what I think is mostly going on. E.g. in your cell-which-may-or-may-not-replicate example, there is a sharp boundary, we just don’t yet have the information to determine where that boundary is.