Pardon me if I am incorrect, but it seems to me that there is a basic assumption going on that everyone, given those clear choices, will think rationally and crunch the numbers themselves in order to find the optimal choice, given a scenario I’d either equal representation or strictly against the “best” choices. I can understand the reasoning behind this, especially given the high percentage Iof people on this particular thread who are willing to do the math, but is it not also a safe assumption that neither of these scenarios will be the case, given that there will be a large percentage of copy cats and almost an equally large percentage Iof people choosing irrationally based on initial inclinations? I can appreciate the work everyone has done in calculating statistics, but honestly, so much of the true results of actual games played by a random population will inevitably prove to be… shall we say, random? While accurate to a large extent, computer calculations can never truly factor in the whimsical nature of freedom of choice. People will pick red/red, like it, and might even do well with it. Sure, we can quibble about optimization for hours, and it has been quite delightful to see so many put this much thought into a basic choice, but the fact of the matter is that while statistically one combination might seen most imposing, it still has a weakness to another “worse” combo for a reason, and chances are that a lot more people will be out there with just the “fluke combo” needed to take you out than will crunch the numbers and agree with your reasoning.
…sorry to interrupt, just thought I’d mention the human factor of inevitable irony for a different perspective.
computer calculations can never truly factor in the whimsical nature of freedom of choice.
I think you will discover that many people here believe that if anyone or anything can “factor in the whimsical nature of freedom of choice”, then computer calculations can do it too.
The dispute is mostly about whether or not to assume that the other players are rational. In the absence of good empirical evidence about the other players, I think you have to assume they are rational. My rationale? Well, if you don’t assume they are rational, exactly what do you assume?
Perhaps the best way to justify the assumption of rationality, though, is to imagine that you are the acknowledged guru on this particular game. And you are offering advice on your blog (which everybody who plays the game reads) regarding choice of sword and armor. So what advice do you give? You had better advise your fans to choose their swords and armor using the mixed strategy Nash equilibrium. Because if you advise anything else, all your fans are going to be pwned.
“Ok”, you say. “If I imagine that, then I see what is good about Nash equilibria. But, why are you asking me to imagine stuff?”
Unfortunately, I don’t have a good answer to that question.
Pardon me if I am incorrect, but it seems to me that there is a basic assumption going on that everyone, given those clear choices, will think rationally and crunch the numbers themselves in order to find the optimal choice, given a scenario I’d either equal representation or strictly against the “best” choices. I can understand the reasoning behind this, especially given the high percentage Iof people on this particular thread who are willing to do the math, but is it not also a safe assumption that neither of these scenarios will be the case, given that there will be a large percentage of copy cats and almost an equally large percentage Iof people choosing irrationally based on initial inclinations? I can appreciate the work everyone has done in calculating statistics, but honestly, so much of the true results of actual games played by a random population will inevitably prove to be… shall we say, random? While accurate to a large extent, computer calculations can never truly factor in the whimsical nature of freedom of choice. People will pick red/red, like it, and might even do well with it. Sure, we can quibble about optimization for hours, and it has been quite delightful to see so many put this much thought into a basic choice, but the fact of the matter is that while statistically one combination might seen most imposing, it still has a weakness to another “worse” combo for a reason, and chances are that a lot more people will be out there with just the “fluke combo” needed to take you out than will crunch the numbers and agree with your reasoning. …sorry to interrupt, just thought I’d mention the human factor of inevitable irony for a different perspective.
I think you will discover that many people here believe that if anyone or anything can “factor in the whimsical nature of freedom of choice”, then computer calculations can do it too.
The dispute is mostly about whether or not to assume that the other players are rational. In the absence of good empirical evidence about the other players, I think you have to assume they are rational. My rationale? Well, if you don’t assume they are rational, exactly what do you assume?
Perhaps the best way to justify the assumption of rationality, though, is to imagine that you are the acknowledged guru on this particular game. And you are offering advice on your blog (which everybody who plays the game reads) regarding choice of sword and armor. So what advice do you give? You had better advise your fans to choose their swords and armor using the mixed strategy Nash equilibrium. Because if you advise anything else, all your fans are going to be pwned.
“Ok”, you say. “If I imagine that, then I see what is good about Nash equilibria. But, why are you asking me to imagine stuff?”
Unfortunately, I don’t have a good answer to that question.