This sounds like the continuity argument, but I’m not quite clear on how the embedding is supposed to work, can you clarify? Instead of telling me what the experimenter rightly or wrongly believes to be the case, spell out for me how he behaves.
If the coin comes up Heads, there is a tiny but non-zero chance that the experimenter mixes up Monday and Tuesday.
What does this mean operationally? Is there a nonzero chance, let’s call it epsilon or e, that the experimenter will incorrectly behave as if it’s Tuesday when it’s Monday? I.e., with probability e, Beauty is not awoken on Monday, the experiment ends, or is awoken and sent home, and we go on to next Sunday evening without any awakenings that week? Then Heads&Tuesday still with certainty does not occur. So maybe you meant that on Monday, he doesn’t awaken Beauty at all, but awakens her on Tuesday instead? Is this confusion persistent across days, or is it a random confusion that happens each time he needs to examine the state of the coin to know what he should do?
And on Tuesday
If the coin comes up Tails, there is a tiny but non-zero chance that the experimenter mixes up Tails and Heads.
So when the coin comes up Tails, there is a nonzero probability, let’s call it delta or d, that the experimenter will incorrectly behave as if it’s Heads? I.e., on Tuesday morning, he will not awaken Beauty or will wake her and send her home until next Sunday? Then Tails&Tuesday is a possible nonoccurrence.
On reflection, my verbal description doesn’t rmatch the reply I wanted to give, which was: the experimenter behaves such that the probability mass is allocated as in the spreadsheet.
Make it “on any day when Beauty is scheduled to remain asleep, the experimenter has some probability of mistakenly waking her, and vice-versa”.
This sounds like the continuity argument, but I’m not quite clear on how the embedding is supposed to work, can you clarify? Instead of telling me what the experimenter rightly or wrongly believes to be the case, spell out for me how he behaves.
What does this mean operationally? Is there a nonzero chance, let’s call it epsilon or e, that the experimenter will incorrectly behave as if it’s Tuesday when it’s Monday? I.e., with probability e, Beauty is not awoken on Monday, the experiment ends, or is awoken and sent home, and we go on to next Sunday evening without any awakenings that week? Then Heads&Tuesday still with certainty does not occur. So maybe you meant that on Monday, he doesn’t awaken Beauty at all, but awakens her on Tuesday instead? Is this confusion persistent across days, or is it a random confusion that happens each time he needs to examine the state of the coin to know what he should do?
And on Tuesday
So when the coin comes up Tails, there is a nonzero probability, let’s call it delta or d, that the experimenter will incorrectly behave as if it’s Heads? I.e., on Tuesday morning, he will not awaken Beauty or will wake her and send her home until next Sunday? Then Tails&Tuesday is a possible nonoccurrence.
On reflection, my verbal description doesn’t rmatch the reply I wanted to give, which was: the experimenter behaves such that the probability mass is allocated as in the spreadsheet.
Make it “on any day when Beauty is scheduled to remain asleep, the experimenter has some probability of mistakenly waking her, and vice-versa”.