I agree that this is the biggest concern with these models, and the GPT-n series running out of steam wouldn’t be a huge relief. It looks likely that we’ll have the first human-scale (in terms of parameters) NNs before 2026 - Metaculus, 81% as of 13.08.2020.
Does anybody know of any work that’s analysing the rate at which, once the first NN crosses the n-parameter barrier, other architectures are also tried at that scale? If no-one’s done it yet, I’ll have a look at scraping the data from Papers With Code’s databases on e.g. ImageNet models, it might be able to answer your question on how many have been tried at >100B as well.
I agree that this is the biggest concern with these models, and the GPT-n series running out of steam wouldn’t be a huge relief. It looks likely that we’ll have the first human-scale (in terms of parameters) NNs before 2026 - Metaculus, 81% as of 13.08.2020.
Does anybody know of any work that’s analysing the rate at which, once the first NN crosses the n-parameter barrier, other architectures are also tried at that scale? If no-one’s done it yet, I’ll have a look at scraping the data from Papers With Code’s databases on e.g. ImageNet models, it might be able to answer your question on how many have been tried at >100B as well.