I also think this is mostly a semantic issue. The same process can be described in terms of implicit prediction errors where e.g. there is some baseline level of leptin in the bloodstream that the NPY/AgRP neurons in the arcuate nucleus ‘expect’ and then if there is less leptin this generates an implicit ‘prediction error’ in those neurons that cause them to increase firing which then stimulates various food-consuming reflexes and desires which ultimately leads to more food and hence ‘correcting’ the prediction error. It isn’t necessary that anywhere there are explicit ‘prediction error neurons’ encoding prediction errors although for larger systems it is often helpful to modularize it this way.
Ultimately, though I think it is more a conceptual question of how to think about control systems—is it best to think in terms of implicit prediction errors or just in terms of the feedback loop dynamics but it amounts to the same thing
I also think this is mostly a semantic issue. The same process can be described in terms of implicit prediction errors where e.g. there is some baseline level of leptin in the bloodstream that the NPY/AgRP neurons in the arcuate nucleus ‘expect’ and then if there is less leptin this generates an implicit ‘prediction error’ in those neurons that cause them to increase firing which then stimulates various food-consuming reflexes and desires which ultimately leads to more food and hence ‘correcting’ the prediction error. It isn’t necessary that anywhere there are explicit ‘prediction error neurons’ encoding prediction errors although for larger systems it is often helpful to modularize it this way.
Ultimately, though I think it is more a conceptual question of how to think about control systems—is it best to think in terms of implicit prediction errors or just in terms of the feedback loop dynamics but it amounts to the same thing