It has always been my opinion that whatever collapses happened actually happened at the time recorded for each electron wave function hitting the screen.
Thanks for the link to Wheeler’s experiment. This experiment doesn’t address what I was addressing.
In wheeler’s experiment, the detector is put in place or taken away after the photons would have had to have passed through the slits. Even though the choice of detector (difraction pattern vs which slit) is made after the photons pass through, the photons are not “fooled” by this and behave at whichever detector is there when they get to it exactly as they should according to QM.
In my experiment, the detector and a recording device are locked in a room with no observer. The detector is never changed, the experiment just takes place without a human observer. It isn’t till sometime later that th room is opened and some human comes in to see the results of the experiment. The human does indeed see a time series of recorded electron hits on the detector which when summed up show the famous diffraction pattern. The question I address is:
Did the wavefunction for the whole room including the detection apparatus not collapse on to one of its allowed outcomes until the human finally went in to the room to see the result or
Did each electronic wavefunction collapse at the time the computer records the detector saw that electron?
My intuition has always been that it is not so much a consciousness seeing the result of the experiment that causes the collapse, as it is something about the apparatus for detecting the outcome of the experiment that causes the collapse. That the wavefunction is spread out across the detector array and then BAM it all gets sucked down somehow to only a single element of the detector array which is triggered.
In this view, wavefunction collapse is much more mechanical than in the way Copenhagen gets talked of around here.
Also, I think that whether the WF collapses when you go in the door, or whether pieces of it collapse each time an electron is recorded at the array are possibly experimentally indistinguishable. However, it may be that Bell’s Theorem EPR experiments do speak to this situation, that there would be experiments in closed rooms that could be done where an earlier collapse vs a later collapse when the observer finally arrives could be distinguished from some subtlety in how results are distributed (which is how I see EPR).
You have my condolences. I have waged this battle here for some time, without much success. If you press EY on the matter, all he says is something along the lines of “MWI is decoherence, decoherence is MWI”, which renders the MWI a redundant concept. Unfortunately, nearly all non-experts here fall into the password-guessing trap, while furiously denying it. Probably because the MWI seems so cute and even intuitive, even if bereft of substance.
This is the hypothesis that was tested, and failed, in the 2007 implementation of Wheeler’s delayed choice experiment.
Thanks for the link to Wheeler’s experiment. This experiment doesn’t address what I was addressing.
In wheeler’s experiment, the detector is put in place or taken away after the photons would have had to have passed through the slits. Even though the choice of detector (difraction pattern vs which slit) is made after the photons pass through, the photons are not “fooled” by this and behave at whichever detector is there when they get to it exactly as they should according to QM.
In my experiment, the detector and a recording device are locked in a room with no observer. The detector is never changed, the experiment just takes place without a human observer. It isn’t till sometime later that th room is opened and some human comes in to see the results of the experiment. The human does indeed see a time series of recorded electron hits on the detector which when summed up show the famous diffraction pattern. The question I address is:
Did the wavefunction for the whole room including the detection apparatus not collapse on to one of its allowed outcomes until the human finally went in to the room to see the result or
Did each electronic wavefunction collapse at the time the computer records the detector saw that electron?
My intuition has always been that it is not so much a consciousness seeing the result of the experiment that causes the collapse, as it is something about the apparatus for detecting the outcome of the experiment that causes the collapse. That the wavefunction is spread out across the detector array and then BAM it all gets sucked down somehow to only a single element of the detector array which is triggered.
In this view, wavefunction collapse is much more mechanical than in the way Copenhagen gets talked of around here.
Also, I think that whether the WF collapses when you go in the door, or whether pieces of it collapse each time an electron is recorded at the array are possibly experimentally indistinguishable. However, it may be that Bell’s Theorem EPR experiments do speak to this situation, that there would be experiments in closed rooms that could be done where an earlier collapse vs a later collapse when the observer finally arrives could be distinguished from some subtlety in how results are distributed (which is how I see EPR).
You have my condolences. I have waged this battle here for some time, without much success. If you press EY on the matter, all he says is something along the lines of “MWI is decoherence, decoherence is MWI”, which renders the MWI a redundant concept. Unfortunately, nearly all non-experts here fall into the password-guessing trap, while furiously denying it. Probably because the MWI seems so cute and even intuitive, even if bereft of substance.