The most promising approach is using genetic material from smart people to make children, but there are the obvious social issues with that. In general, I suspect that human intelligence is limited partly by increased value drift leading at some point to people having fewer kids.
The 2nd-most promising approach is genetic screening of embryos and embryo selection, but currently that’s only understood well enough for smallish improvements, and if it was common enough I suspect it could lead to problems from reduced genetic diversity.
I was not impressed by the first linked post. Many relevant genes only affect early brain development. Genetic engineering of a fertilized egg cell is much easier, and significantly improving intelligence that way is still not a thing considered practical to do today. The author’s understanding of biology is poor by my standards.
I’m also not optimistic about Neuralink:
Implants for input are worse than vision and displays.
Neuron development for high-bandwidth output requires direct feedback to neurons, which for muscle control comes from proprioceptors. That feedback is in the form of complex patterns of chemicals being released, which a brain implant wouldn’t be able to do even if those patterns were fully understood, which they aren’t.
On a timescale of 1-15 years, if you want smarter people, the best you can hope for is probably better education. I think that AI training has some insights for designing education, and I suppose understanding AI architectures and operation has made me a little bit smarter.
The most promising approach is using genetic material from smart people to make children, but there are the obvious social issues with that. In general, I suspect that human intelligence is limited partly by increased value drift leading at some point to people having fewer kids.
The 2nd-most promising approach is genetic screening of embryos and embryo selection, but currently that’s only understood well enough for smallish improvements, and if it was common enough I suspect it could lead to problems from reduced genetic diversity.
I was not impressed by the first linked post. Many relevant genes only affect early brain development. Genetic engineering of a fertilized egg cell is much easier, and significantly improving intelligence that way is still not a thing considered practical to do today. The author’s understanding of biology is poor by my standards.
I’m also not optimistic about Neuralink:
Implants for input are worse than vision and displays.
Neuron development for high-bandwidth output requires direct feedback to neurons, which for muscle control comes from proprioceptors. That feedback is in the form of complex patterns of chemicals being released, which a brain implant wouldn’t be able to do even if those patterns were fully understood, which they aren’t.
On a timescale of 1-15 years, if you want smarter people, the best you can hope for is probably better education. I think that AI training has some insights for designing education, and I suppose understanding AI architectures and operation has made me a little bit smarter.