As I understand it (someone correct me if I’m wrong), there are two problems with the Born rule:
1) It is non-linear, which suggests that it’s not fundamental, since other fundamental laws seem to be linear
2) From my reading of Robin’s article, I gather that the problem with the many-worlds interpretation is: let’s say a world is created for each possible outcome (countable or uncountable). In that case, the vast majority of worlds should end up away from the peaks of the distribution, just because the peaks only occupy a small part of any distribution.
Robin’s solution seems to me equivalent to the Quantum Spaghetti Monster eating the unlikely worlds that we find ourselves not to end up in. The key line is “sudden and thermodynamically irreversible.” Actually, that should be enough to bury the theory since aren’t fundamental physical laws thermodynamically neutral?
We could probably eliminate this distraction of consciousness, couldn’t we? I mean, let’s say that Mathematica version 5000 comes out in a few centuries and in addition to its other symbolic algebra capabilities, it comes with a physical-law-prover: you ask it questions and it sets up experiments to answer those questions. So you ask it about quantum mechanics, it does a bunch of double-slit-experiments in a robotic lab, and gives you the answer, which includes the Born rule. Consciousness was never involved.
Actually it seems to me like this whole business of quantum probabilities is way overrated (for the non-physicist), because it only really manifests itself in cleverly constructed experiments . . . right? I mean, setting aside exactly how Born’s rule derives from the underlying physics, is there any reason to believe that we would learn anything new by finding out?
The observer’s consciousness is still involved. Imagine that the Born rule isn’t a law of the universe itself, but of consciousness. The universe evaluates all branches. Consciousness follows the branches in weights following the Born rule. The conscious observer always finds themselves down a series of branches that were selected by the Born rule, and it’s easy for them to take measurements to confirm this. The Mathematica 5000 machine that’s come down this series of branches has made measurements from experiments and has found that the Born rule has held. It only comes up with this result because this is the version of the machine that has followed the observer’s consciousness through the branches. In the raw universe, most worlds have the Mathematica 5000 machine finding that Born’s rule does not hold; these aren’t the worlds that conscious observers usually find themselves in though.
As I understand it (someone correct me if I’m wrong), there are two problems with the Born rule: 1) It is non-linear, which suggests that it’s not fundamental, since other fundamental laws seem to be linear
2) From my reading of Robin’s article, I gather that the problem with the many-worlds interpretation is: let’s say a world is created for each possible outcome (countable or uncountable). In that case, the vast majority of worlds should end up away from the peaks of the distribution, just because the peaks only occupy a small part of any distribution.
Robin’s solution seems to me equivalent to the Quantum Spaghetti Monster eating the unlikely worlds that we find ourselves not to end up in. The key line is “sudden and thermodynamically irreversible.” Actually, that should be enough to bury the theory since aren’t fundamental physical laws thermodynamically neutral?
We could probably eliminate this distraction of consciousness, couldn’t we? I mean, let’s say that Mathematica version 5000 comes out in a few centuries and in addition to its other symbolic algebra capabilities, it comes with a physical-law-prover: you ask it questions and it sets up experiments to answer those questions. So you ask it about quantum mechanics, it does a bunch of double-slit-experiments in a robotic lab, and gives you the answer, which includes the Born rule. Consciousness was never involved.
Actually it seems to me like this whole business of quantum probabilities is way overrated (for the non-physicist), because it only really manifests itself in cleverly constructed experiments . . . right? I mean, setting aside exactly how Born’s rule derives from the underlying physics, is there any reason to believe that we would learn anything new by finding out?
The observer’s consciousness is still involved. Imagine that the Born rule isn’t a law of the universe itself, but of consciousness. The universe evaluates all branches. Consciousness follows the branches in weights following the Born rule. The conscious observer always finds themselves down a series of branches that were selected by the Born rule, and it’s easy for them to take measurements to confirm this. The Mathematica 5000 machine that’s come down this series of branches has made measurements from experiments and has found that the Born rule has held. It only comes up with this result because this is the version of the machine that has followed the observer’s consciousness through the branches. In the raw universe, most worlds have the Mathematica 5000 machine finding that Born’s rule does not hold; these aren’t the worlds that conscious observers usually find themselves in though.