Most current “alignment research” with LLMs seems indistinguishable from “capabilities research”. Both are just “getting the AI to be better at what we want it to do”, and there isn’t really a critical difference between the two.
Alignment in the original sense was defined oppositionally to the AI’s own nefarious objectives. Which LLMs don’t have, so alignment research with LLMs is probably moot.
something related I wrote in my MATS application:
I think the most important alignment failure modes occur when deploying an LLM as part of an agent (i.e. a program that autonomously runs a limited-context chain of thought from LLM predictions, maintains a long-term storage, calls functions such as search over storage, self-prompting and habit modification either based on LLM-generated function calls or as cron-jobs/hooks).
These kinds of alignment failures are (1) only truly serious when the agent is somehow objective-driven or equivalently has feelings, which current LLMs have not been trained to be (I think that would need some kind of online learning, or learning to self-modify) (2) can only be solved when the agent is objective-driven.
current LLMs vs dangerous AIs
Most current “alignment research” with LLMs seems indistinguishable from “capabilities research”. Both are just “getting the AI to be better at what we want it to do”, and there isn’t really a critical difference between the two.
Alignment in the original sense was defined oppositionally to the AI’s own nefarious objectives. Which LLMs don’t have, so alignment research with LLMs is probably moot.
something related I wrote in my MATS application:
I think the most important alignment failure modes occur when deploying an LLM as part of an agent (i.e. a program that autonomously runs a limited-context chain of thought from LLM predictions, maintains a long-term storage, calls functions such as search over storage, self-prompting and habit modification either based on LLM-generated function calls or as cron-jobs/hooks).
These kinds of alignment failures are (1) only truly serious when the agent is somehow objective-driven or equivalently has feelings, which current LLMs have not been trained to be (I think that would need some kind of online learning, or learning to self-modify) (2) can only be solved when the agent is objective-driven.