This needs to be spelled out more. Do you mean that if A takes both boxes, B gets $1,000, and if A takes one box, B gets $1,000,000? Why is this a dilemma at all? What you do has no effect on the money you get.
I don’t know how to format a table, but here is what I want the game to be:
A-action B-action A-winnings B-winnings
2-box 2-box $1 $1
2-box 1-box $1001 $0
1-box 2-box $0 $1001
1-box 1-box $1000 $1000
Now compare this with Newcomb’s game:
A-action Prediction A-winnings
2-box 2-box $1
2-box 1-box $1001
1-box 2-box $0
1-box 1-box $1000
Now, if the “Prediction” in the second table is actually a flawless prediction of a different player’s action then we obtain the first three columns of the first table.
Hopefully the rest is clear, and please forgive the triviality of this observation.
This needs to be spelled out more. Do you mean that if A takes both boxes, B gets $1,000, and if A takes one box, B gets $1,000,000? Why is this a dilemma at all? What you do has no effect on the money you get.
I don’t know how to format a table, but here is what I want the game to be:
A-action B-action A-winnings B-winnings
2-box 2-box $1 $1
2-box 1-box $1001 $0
1-box 2-box $0 $1001
1-box 1-box $1000 $1000
Now compare this with Newcomb’s game:
A-action Prediction A-winnings
2-box 2-box $1
2-box 1-box $1001
1-box 2-box $0
1-box 1-box $1000
Now, if the “Prediction” in the second table is actually a flawless prediction of a different player’s action then we obtain the first three columns of the first table.
Hopefully the rest is clear, and please forgive the triviality of this observation.