The maximum work you can extract from a system does not depend on knowledge- greater knowledge may let you get work done more efficiently, and if you operate on the scale where raising an electron to a higher energy state is ‘useful work’ and not ‘heat’, then you can minimize the heat term.
But you can’t have perfect knowledge about the system, because matter cannot be perfectly described. If the state of the box becomes more knowable than it was (per Heisenberg uncertainty), then the state of outside the box must become less knowable than it was. You could measure the knowability of a system by determining how may states are microscopically indistinguishable from the observed state: As energies of the particles equalize, (such that the number of possible plank-unit positions is more equally divided between all the particles), there are more total states which are indistinguishable (since the total number of possible states is equal to the product of the number of possible states for each particle, and energy is conserved.)
if you can show where there are spontaneous interactions which result in two particles having a greater difference in total energy after they interact than they had before they interact, feel free to win every Nobel prize ever.
The maximum work you can extract from a system does not depend on knowledge- greater knowledge may let you get work done more efficiently, and if you operate on the scale where raising an electron to a higher energy state is ‘useful work’ and not ‘heat’, then you can minimize the heat term.
But you can’t have perfect knowledge about the system, because matter cannot be perfectly described. If the state of the box becomes more knowable than it was (per Heisenberg uncertainty), then the state of outside the box must become less knowable than it was. You could measure the knowability of a system by determining how may states are microscopically indistinguishable from the observed state: As energies of the particles equalize, (such that the number of possible plank-unit positions is more equally divided between all the particles), there are more total states which are indistinguishable (since the total number of possible states is equal to the product of the number of possible states for each particle, and energy is conserved.)
if you can show where there are spontaneous interactions which result in two particles having a greater difference in total energy after they interact than they had before they interact, feel free to win every Nobel prize ever.