Interesting. How do you get around the problem that not all regularities are something we would consider a law of nature, even when generalizable? (Trivial example: I buy a pair of jeans and immediately put 3 quarters in them and keep these jeans until I throw them out. We would not say that “Those jeans have 3 quarters in them when belonging to me” is a law of nature, but it takes the form of a complete regularity. Even if the jeans lasted until the heat death of the universe and always had 3 quarters in them, we wouldn’t say it is a law that they do.)
Regularities of the kind you describe would very plausibly not be the axioms of the best system for any vocabulary we care about. Adding the jeans regularity to the list of axioms in a system would give up simplicity for a trivial gain in information content.
So it comes down to laws being separated from other regularities because of some ratio of parsimony to information? Without some reason to declare a particular boundary on that, that seems like a rather arbitrary distinction.
Interesting. How do you get around the problem that not all regularities are something we would consider a law of nature, even when generalizable? (Trivial example: I buy a pair of jeans and immediately put 3 quarters in them and keep these jeans until I throw them out. We would not say that “Those jeans have 3 quarters in them when belonging to me” is a law of nature, but it takes the form of a complete regularity. Even if the jeans lasted until the heat death of the universe and always had 3 quarters in them, we wouldn’t say it is a law that they do.)
Regularities of the kind you describe would very plausibly not be the axioms of the best system for any vocabulary we care about. Adding the jeans regularity to the list of axioms in a system would give up simplicity for a trivial gain in information content.
So it comes down to laws being separated from other regularities because of some ratio of parsimony to information? Without some reason to declare a particular boundary on that, that seems like a rather arbitrary distinction.