I wonder whether the models are so coarse that the cyclones that do emerge are in a sense the minimum size.
It’s not my area, but I don’t think that’s the case. My impression is that part of what drives very high wind speeds in the strongest hurricanes is convection on the scale of a few km in the eyewall, so models with that sort of spatial resolution can generate realistically strong systems, but that’s ~20x finer than typical climate model resolutions at the moment, so it will be a while before we can simulate those systems routinely (though, some argue we could do it if we had a computer costing a few billion dollars).
It seems like it might be an example of relatively small structures having potentially arbitrarily large long-term effects on the state of the entire system.
It could be the case tho that the overall effects of cyclones are still statistical at the scale of the entire planet’s climate.
Regardless, it’s a great example of the kind of thing for which we don’t yet have good general learning algorithms.
It’s not my area, but I don’t think that’s the case. My impression is that part of what drives very high wind speeds in the strongest hurricanes is convection on the scale of a few km in the eyewall, so models with that sort of spatial resolution can generate realistically strong systems, but that’s ~20x finer than typical climate model resolutions at the moment, so it will be a while before we can simulate those systems routinely (though, some argue we could do it if we had a computer costing a few billion dollars).
Thanks! That’s very interesting to me.
It seems like it might be an example of relatively small structures having potentially arbitrarily large long-term effects on the state of the entire system.
It could be the case tho that the overall effects of cyclones are still statistical at the scale of the entire planet’s climate.
Regardless, it’s a great example of the kind of thing for which we don’t yet have good general learning algorithms.