I don’t think any one of those would have an impact anywhere near that big. If nothing else, they’ll each take long enough to mature that their impact will be spread out over many years. However, I would suggest the combination of distributed, autonomous manufacturing (of which 3D printing is one part), generative design, and materials informatics (and related informatics technologies) could get there.
Right now bringing new stuff to market and scaling it up is many times faster and cheaper for software than anything else. The more you can reduce the resource burden, and with it the number of people and organizations that have to buy in, to turning ideas into products, the smaller that gap can get. I would naively assume that this is analogous to any other catalyst—lower the energy barriers for the rate-limiting steps, and you get exponential speed-up. It also reduces the cost of entry and cost of failure, making it possible for many more people to participate in innovation.
One problem with this idea is that what I’m proposing is to essentially commoditize scale-up, manufacturing, and some parts of R&D, to make them nearly free. I’m making no attempt to work out the downstream effects of that on the service sector, which is a majority of GDP. I do think that’s likely more a measurement problem with GDP (if a problem at all), though, and that the kind of improvement I’m suggesting could easily lead to a less-easily-measured acceleration of economic value growth.
I don’t think any one of those would have an impact anywhere near that big. If nothing else, they’ll each take long enough to mature that their impact will be spread out over many years. However, I would suggest the combination of distributed, autonomous manufacturing (of which 3D printing is one part), generative design, and materials informatics (and related informatics technologies) could get there.
Right now bringing new stuff to market and scaling it up is many times faster and cheaper for software than anything else. The more you can reduce the resource burden, and with it the number of people and organizations that have to buy in, to turning ideas into products, the smaller that gap can get. I would naively assume that this is analogous to any other catalyst—lower the energy barriers for the rate-limiting steps, and you get exponential speed-up. It also reduces the cost of entry and cost of failure, making it possible for many more people to participate in innovation.
One problem with this idea is that what I’m proposing is to essentially commoditize scale-up, manufacturing, and some parts of R&D, to make them nearly free. I’m making no attempt to work out the downstream effects of that on the service sector, which is a majority of GDP. I do think that’s likely more a measurement problem with GDP (if a problem at all), though, and that the kind of improvement I’m suggesting could easily lead to a less-easily-measured acceleration of economic value growth.