That’s just a utility maximiser with a bounded utility function.
But this has become a linguistic debate, not a conceputal one. One version of satisficisers (the version I define, which some people intuitively share) will tend to become maximisers. Another version (the bounded utility maximisers that you define) are already maximisers. We both agree on these facts—so what is there to argue about but the linguistics?
Since satisficing is more intuitively that rigorously defined (multiple formal definitions on wikipedia), I don’t think there’s anything more to dispute?
All right, I agree with that. It does seem like satisficers are (or quickly become) a subclass of maximisers by either definition.
Although I think the way I define them is not equivalent to a generic bounded maximiser. When I think of one of those it’s something more like U = paperclips/(|paperclips|+1) than what I wrote (i.e. it still wants to maximize without bound, it’s just less interested in low probabilities of high gains), which would behave rather differently. Maybe I just have unusual mental definitions of both, however.
That’s just a utility maximiser with a bounded utility function.
But this has become a linguistic debate, not a conceputal one. One version of satisficisers (the version I define, which some people intuitively share) will tend to become maximisers. Another version (the bounded utility maximisers that you define) are already maximisers. We both agree on these facts—so what is there to argue about but the linguistics?
Since satisficing is more intuitively that rigorously defined (multiple formal definitions on wikipedia), I don’t think there’s anything more to dispute?
All right, I agree with that. It does seem like satisficers are (or quickly become) a subclass of maximisers by either definition.
Although I think the way I define them is not equivalent to a generic bounded maximiser. When I think of one of those it’s something more like U = paperclips/(|paperclips|+1) than what I wrote (i.e. it still wants to maximize without bound, it’s just less interested in low probabilities of high gains), which would behave rather differently. Maybe I just have unusual mental definitions of both, however.
Maybe bounded maximiser vs maximiser with cutoff? With the second case being a special case of the first (for there are many ways to bound a utility).
Yes, that sounds good. I’ll try using those terms next time.