What do you mean by computable or uncomputable math? In one sense, all math is computable (you can enumerate all valid proofs in a formal system, even if it talks about something mind-bogglingly huge like Grothendieck universes). In another sense, all math is uncomputable (you can’t enumerate all true facts about the integers, never mind more complex stuff). Is there some well-defined third way of cashing out the concept?
I don’t have an answer for that, since I’m not proposing to make a distinction based on computable vs uncomputable math. But I think Juergen Schmidhuber has defended some version of “only computable math exists” on the everything-list, so you can try searching the archives there.
What do you mean by computable or uncomputable math? In one sense, all math is computable (you can enumerate all valid proofs in a formal system, even if it talks about something mind-bogglingly huge like Grothendieck universes). In another sense, all math is uncomputable (you can’t enumerate all true facts about the integers, never mind more complex stuff). Is there some well-defined third way of cashing out the concept?
I don’t have an answer for that, since I’m not proposing to make a distinction based on computable vs uncomputable math. But I think Juergen Schmidhuber has defended some version of “only computable math exists” on the everything-list, so you can try searching the archives there.