It’s easy to confuse entropy with free energy. Since energy is conserved, globally the two measure the same thing. But locally, the two decouple, and free energy is the more relevant parameter here. Living processes often need to use extra free energy to prevent the work they are interested in doing from getting converted into heat (e.g. when moving we’re constantly fighting friction); in this way we’re in some sense locally increasing free energy.
I think a reasonable (though imperfect) analogy here is with potential energy. Systems tend to reduce their potential energy, and thus you can make a story that, in order to avoid just melting into a puddle on the ground, life needs to constantly fight the tendency of gravitational potential energy to be converted to kinetic energy (and ultimately heat). And indeed, when we walk upright, fly, build skyscrapers, use hydro power, we’re slowing down or modifying the tendency of potential energy to become kinetic. But this is in no sense the fundamental or defining property of life, whether we’re looking globally at all matter or locally at living beings. We sometimes burrow into the earth, flatten mountains, etc. While life both (a), can use potential energy of other stuff to power its engines and (b), needs to at least somewhat fight the tendency of gravitational kinetic energy to turn it into a puddle of matter without any internal structure, this is just one of many physical stories about life and isn’t “the whole story”.
Maybe I’ll add two addenda:
It’s easy to confuse entropy with free energy. Since energy is conserved, globally the two measure the same thing. But locally, the two decouple, and free energy is the more relevant parameter here. Living processes often need to use extra free energy to prevent the work they are interested in doing from getting converted into heat (e.g. when moving we’re constantly fighting friction); in this way we’re in some sense locally increasing free energy.
I think a reasonable (though imperfect) analogy here is with potential energy. Systems tend to reduce their potential energy, and thus you can make a story that, in order to avoid just melting into a puddle on the ground, life needs to constantly fight the tendency of gravitational potential energy to be converted to kinetic energy (and ultimately heat). And indeed, when we walk upright, fly, build skyscrapers, use hydro power, we’re slowing down or modifying the tendency of potential energy to become kinetic. But this is in no sense the fundamental or defining property of life, whether we’re looking globally at all matter or locally at living beings. We sometimes burrow into the earth, flatten mountains, etc. While life both (a), can use potential energy of other stuff to power its engines and (b), needs to at least somewhat fight the tendency of gravitational kinetic energy to turn it into a puddle of matter without any internal structure, this is just one of many physical stories about life and isn’t “the whole story”.