Interestingly, the Yablo’s paradox vanishes when there is no infinity. If the last statement of the Yablo’s sequence exists, it is true. And all at the preceding positions are false. Everything is well. Another reason, I am an infinity atheist.
The “last statement”? This would require that there exists a highest natural number. That seems like it would be a weirder occurrence than the mostly harmless Yablo’s paradox.
Although I suppose we can always choose to work in “the natural numbers mod N”, for some value of N, which is one way to banish “infinity”.
Interestingly, the Yablo’s paradox vanishes when there is no infinity. If the last statement of the Yablo’s sequence exists, it is true. And all at the preceding positions are false. Everything is well. Another reason, I am an infinity atheist.
The “last statement”? This would require that there exists a highest natural number. That seems like it would be a weirder occurrence than the mostly harmless Yablo’s paradox.
Although I suppose we can always choose to work in “the natural numbers mod N”, for some value of N, which is one way to banish “infinity”.
There is no need for ridiculously large numbers. There is always the last statement in a row and this way and only this way, no Yablo paradox arises.
I’m not sure what you mean by this. “There is no need”? So is there a highest natural number, or not? Because if not:
If S(N) is the last statement, N is a natural number.
Therefore N + 1 is a natural number and N + 1 > N.
Therefore the statement S(N + 1) exists.
Therefore S(N) is not the last statement. Contradiction.
If there is no infinity (the premise) then there must be.
If there is no infinity there must not be a highest natural number, but there could be if there is infinity?
s/not //
Edit: That looks bad. Let’s see.
s/.ot /
That works.