What I am saying is that the decision theory which applied mathematicians follow, operates under practical constraints (limited computing time), and this prevents introduction of very fancy things like your (output X) simply because they are computationally heavy. The theory that always substitutes is what I originally noted in the other thread, regarding the newcomb’s. Due to substitution, that theory doesn’t ‘pollute’ it’s own proof checker with a proposition that may be untrue and may break the proof checker (but practically, would make proof checker very slow).
edit: That being said, the decision theories operate under notion of perfect accuracy and unlimited computing time; the applied mathematicians see this field as not very relevant to any practical software (e.g. AI). The practical AI is best off substituting for X everywhere. The practical AI is never a guaranteed utility maximizer; there will always be problems that it won’t be able to solve correctly in the given time, and the important consideration is to try to be able to solve as large set of problems in limited time, as possible. That is why i have very little inclination to write some semi-formalization of what i use when i am writing code to decide on things. I would rather write specifications for making AI that actually does it; the specifications only need to be as formal as for the programmer who implements them to understand the intent. (I can alternatively implement it myself, and then it becomes completely formalized to the point that computer can run it)
re: EDIT
Ahh, I see.
What I am saying is that the decision theory which applied mathematicians follow, operates under practical constraints (limited computing time), and this prevents introduction of very fancy things like your (output X) simply because they are computationally heavy. The theory that always substitutes is what I originally noted in the other thread, regarding the newcomb’s. Due to substitution, that theory doesn’t ‘pollute’ it’s own proof checker with a proposition that may be untrue and may break the proof checker (but practically, would make proof checker very slow).
edit: That being said, the decision theories operate under notion of perfect accuracy and unlimited computing time; the applied mathematicians see this field as not very relevant to any practical software (e.g. AI). The practical AI is best off substituting for X everywhere. The practical AI is never a guaranteed utility maximizer; there will always be problems that it won’t be able to solve correctly in the given time, and the important consideration is to try to be able to solve as large set of problems in limited time, as possible. That is why i have very little inclination to write some semi-formalization of what i use when i am writing code to decide on things. I would rather write specifications for making AI that actually does it; the specifications only need to be as formal as for the programmer who implements them to understand the intent. (I can alternatively implement it myself, and then it becomes completely formalized to the point that computer can run it)