In terms of passing information to the brain, yes, it is. It excites neurons in a specific pattern in such a way as to form certain connections in the brain. It does this through cells in the retina, and the information does pass through a specific set of filters before it reaches the cortex, but I don’t think that is an important distinction. To give an example, one of the things a friend of mine is working in the lab next door is inserting a channelrhodopsin gene into the visual cortex of monkeys. Channelrhodopsin is the protein in retinal cells that cause them to fire in response to light. By inserting it in other neural tissue, we can cause specific cells to fire by shining light of specific frequencies onto the cell. It’s cool stuff, and I would put money on it becoming a dominant form of BCI in the mid term, at least for getting information into the brain.
The reason I bring this up is that it is using exactly the same mechanism that the retina uses, it just bypasses a few of the neural filtering mechanisms. Filters are incredibly useful, and while, in the future, we may want some of our connections to be directly into the cortex, we also might want to take advantage of some of those systems. To call one a cybernetic interface, and not the other, seems to be arbitrary.
Yes, this does mean that every human-computer interface is, in the end, a brain-computer interface with just an extra informational filter in between. It also means that every human interaction is brain-to-brain, again with just extra filters in place. I’m OK with that. I also find the idea very aesthetically pleasing, but that has no weight on whether it is true. When we talk about communication, cybernetics, and interfaces, it may be useful to distinguish between what filters are in place and how those effect the signal, but everything is eventually (interface/brain)-to-brain.
We all know how computer monitors work. We roughly speaking know that the information from the computer ends up processed in the brain in the visual cortex. But we can still tell the difference between a computer monitor and matrix headjack.
And DON’T EVEN GET ME STARTED on people who think Wikipedia is an “Artificial Intelligence”, the invention of LSD was a “Singularity” or that corporations are “superintelligent”!
Could you give a definition of cybernetics that does not include both? Cybernetics, as a word, has two different meanings. First is the study of the structure of regulartory systems. This, in regards to electronics, is where I believe it got its second meaning, which is much fuzzier. Most of us have an image of a Neuromancer style biomechanical ninja when we hear it, but have nothing in the way of a set definition. In fact, it appears normative, referring to something that is futuristic. This, of course, changes. Well designed mechanical legs that let you run faster than an Olympic sprinter would easily have been called cybernetics in the 60s. Now, because that’s here, my impression is that people are more hesitant to call it that.
Do we draw the cybernetic/non-cybernetic line at something that physically touches neural tissue? Or projects light on it? Or induces changes in it with magnetic stimulation? Does it have to interface with neurons, or do glia count too? Muscle cells? Rods and cones? If we have a device that controls hormones in the blood, is that cybernetic? I understand your point about not overgeneralizing, and I tried to include that in response. Cybernetics, if it is to mean anything and not be an ambiguous rube/blegg as we discover more, has to be thought of as being heavily related to information processing in the brain. Filters are incredibly important. In an information processing system, they are almost everything. But in terms of getting information into the brain, the difference between a cortical brainjack and a monitor is what type of filters are in their way. Those filters can be broken down into incredibly complex systems that we can and should distinguish, but that’s the proper conceptual framework with which to look at the problem.
In terms of passing information to the brain, yes, it is. It excites neurons in a specific pattern in such a way as to form certain connections in the brain. It does this through cells in the retina, and the information does pass through a specific set of filters before it reaches the cortex, but I don’t think that is an important distinction. To give an example, one of the things a friend of mine is working in the lab next door is inserting a channelrhodopsin gene into the visual cortex of monkeys. Channelrhodopsin is the protein in retinal cells that cause them to fire in response to light. By inserting it in other neural tissue, we can cause specific cells to fire by shining light of specific frequencies onto the cell. It’s cool stuff, and I would put money on it becoming a dominant form of BCI in the mid term, at least for getting information into the brain.
The reason I bring this up is that it is using exactly the same mechanism that the retina uses, it just bypasses a few of the neural filtering mechanisms. Filters are incredibly useful, and while, in the future, we may want some of our connections to be directly into the cortex, we also might want to take advantage of some of those systems. To call one a cybernetic interface, and not the other, seems to be arbitrary.
Yes, this does mean that every human-computer interface is, in the end, a brain-computer interface with just an extra informational filter in between. It also means that every human interaction is brain-to-brain, again with just extra filters in place. I’m OK with that. I also find the idea very aesthetically pleasing, but that has no weight on whether it is true. When we talk about communication, cybernetics, and interfaces, it may be useful to distinguish between what filters are in place and how those effect the signal, but everything is eventually (interface/brain)-to-brain.
[edited for typo]
No, it isn’t.
We all know how computer monitors work. We roughly speaking know that the information from the computer ends up processed in the brain in the visual cortex. But we can still tell the difference between a computer monitor and matrix headjack.
Could you give a definition of cybernetics that does not include both? Cybernetics, as a word, has two different meanings. First is the study of the structure of regulartory systems. This, in regards to electronics, is where I believe it got its second meaning, which is much fuzzier. Most of us have an image of a Neuromancer style biomechanical ninja when we hear it, but have nothing in the way of a set definition. In fact, it appears normative, referring to something that is futuristic. This, of course, changes. Well designed mechanical legs that let you run faster than an Olympic sprinter would easily have been called cybernetics in the 60s. Now, because that’s here, my impression is that people are more hesitant to call it that.
Do we draw the cybernetic/non-cybernetic line at something that physically touches neural tissue? Or projects light on it? Or induces changes in it with magnetic stimulation? Does it have to interface with neurons, or do glia count too? Muscle cells? Rods and cones? If we have a device that controls hormones in the blood, is that cybernetic? I understand your point about not overgeneralizing, and I tried to include that in response. Cybernetics, if it is to mean anything and not be an ambiguous rube/blegg as we discover more, has to be thought of as being heavily related to information processing in the brain. Filters are incredibly important. In an information processing system, they are almost everything. But in terms of getting information into the brain, the difference between a cortical brainjack and a monitor is what type of filters are in their way. Those filters can be broken down into incredibly complex systems that we can and should distinguish, but that’s the proper conceptual framework with which to look at the problem.