If the detected information is silently and automatically destroyed, the interference pattern is recovered ..
Indeed, but it would take a lot more than a single polarizer to destroy all traces of thermal radiation from a fullerene molecule. Once those thermal photons are out, you cannot really destroy all traces of their interaction with the rest of the Universe. Well, maybe you can, somehow, but that was not attempted in the experiment. My original point was that entanglement with the environment (=possibility of detection) is enough to destroy the interference pattern. Hence my puzzlement by Incorrect’s statement that “wave function collapse happens at certain scales”.
Not sure where you see a contradiction.
Indeed, but it would take a lot more than a single polarizer to destroy all traces of thermal radiation from a fullerene molecule. Once those thermal photons are out, you cannot really destroy all traces of their interaction with the rest of the Universe. Well, maybe you can, somehow, but that was not attempted in the experiment. My original point was that entanglement with the environment (=possibility of detection) is enough to destroy the interference pattern. Hence my puzzlement by Incorrect’s statement that “wave function collapse happens at certain scales”.