The main benefit I see of hardcoding optimisation is that, assuming the system’s pieces learn as intended (without any mesa-optimisation happening in addition to the hardcoded optimisation) you get more access and control as a programmer over what the learned objective actually is. You could attempt to regress the learned objective directly to a goal you want, or attempt to enforce a certain form on it, etc. When the optimisation itself is learned*, the optimiser is more opaque, and you have fewer ways to affect what goal is learned: which weights of your enormous LSTM-based mesa-optimiser represent the objective?
This doesn’t solve the problem completely (you might still learn an objective that is very incorrect off-distribution, etc.), but could offer more control and insight into the system to the programmer.
*Of course, you can have learned optimisation where you keep track of the objective which is being optimised (like in Learning to Learn by Gradient Descent), but I’d class that more under hard-coded optimisation for the purposes of this discussion. Here I mean the kind of learned optimisation that happens where you’re not building the architecture explicitly around optimising or learning to optimise.
Yes, it probably doesn’t apply to most objectives. Though it seems to me that the closer the task is to something distinctly human, the more probable it is that this kind of consideration can apply. E.g., making judgements in criminal court cases and writing fiction are domains where it’s not implausible to me that this could apply.
I do think this is a pretty speculative argument, even for this sequence.