You’re not really wrong. The thing is that “Occam’s razor” is a conceptual principle, not one mathematically defined law. A certain (subjectively very appealing) formulation of it does follow from Bayesianism.
P(AB model) \propto P(AB are correct) and P(A model) \propto P(A is correct). Then P(AB model) ⇐ P(A model).
Your math is a bit off, but I understand what you mean. If we have two sets of models, with no prior information to discriminate between their members, then the prior gives less probability to each model in the larger set than in the smaller one.
More generally, if deciding that model 1 is true gives you more information than deciding that model 2 is true, that means that the maximum entropy given model 1 is lower than that given model 2, which in turn means (under the maximum entropy principle) that model 1 was a-priori less likely.
Anyway, this is all besides the discussion that inspired my previous comment. My point was that even without Popper and Jaynes to enlighten us, science was making progress using other methods of rationality, among which is a myriad of non-Bayesian interpretations of Occam’s razor.
Let’s assume a strong version of Bayesianism, which entails the maximum entropy principle. So our belief is the one that has the maximum entropy, among those consistent with our prior information. If we now add the information that some model is true, this generally invalidate our previous belief, making the new maximum-entropy belief one of lower entropy. The reduction in entropy is the amount of information you gain by learning the model. In a way, this is a cost we pay for “narrowing” our belief.
The upside of it is that it tells us something useful about the future. Of course, not all information regarding the world is relevant for future observations. The part that doesn’t help control our anticipation is failing to pay rent, and should be evacuated. The part that does inform us about the future may be useful enough to be worth the cost we pay in taking in new information.
I’ll expand on all of this in my sequence on reinforcement learning.