For those also curious, Yamanaka factors are specific genes that turn specialized cells (e.g. skin, hair) into induced pluripotent stem cells (iPSCs) which can turn into any other type of cell.
This is a big deal because you can generate lots of stem cells to make full organs[1] or reverse aging (maybe? they say you just turn the cell back younger, not all the way to stem cells).
You can also do better disease modeling/drug testing: if you get skin cells from someone w/ a genetic kidney disease, you can turn those cells into the iPSCs, then into kidney cells which will exhibit the same kidney disease because it’s genetic. You can then better understand how the [kidney disease] develops and how various drugs affect it.
So, it’s good to have ways to produce lots of these iPSCs. According to the article, SOTA was <1% of cells converted into iPSCs, whereas the GPT suggestions caused a 50x improvement to 33% of cells converted. That’s quite huge!, so hopefully this result gets verified. I would guess this is true and still a big deal, but concurrent work got similar results.
Too bad about the tumors. Turns out iPSCs are so good at turning into other cells, that they can turn into infinite cells (ie cancer). iPSCs were used to fix spinal cord injuries (in mice) which looked successful for 112 days, but then a follow up study said [a different set of mice also w/ spinal iPSCs] resulted in tumors.
My current understanding is this is caused by the method of delivering these genes (ie the Yamanaka factors) through retrovirus which
is a virus that uses RNA as its genomic material. Upon infection with a retrovirus, a cell converts the retroviral RNA into DNA, which in turn is inserted into the DNA of the host cell.
which I’d guess this is the method the Retro Biosciences uses.
I also really loved the story of how Yamanaka discovered iPSCs:
Induced pluripotent stem cells were first generated by Shinya Yamanaka and Kazutoshi Takahashi at Kyoto University, Japan, in 2006.[1] They hypothesized that genes important to embryonic stem cell (ESC) function might be able to induce an embryonic state in adult cells. They chose twenty-four genes previously identified as important in ESCs and used retroviruses to deliver these genes to mouse fibroblasts. The fibroblasts were engineered so that any cells reactivating the ESC-specific gene, Fbx15, could be isolated using antibiotic selection.
Upon delivery of all twenty-four factors, ESC-like colonies emerged that reactivated the Fbx15 reporter and could propagate indefinitely. To identify the genes necessary for reprogramming, the researchers removed one factor at a time from the pool of twenty-four. By this process, they identified four factors, Oct4, Sox2, cMyc, and Klf4, which were each necessary and together sufficient to generate ESC-like colonies under selection for reactivation of Fbx15.
- ^
These organs would have the same genetics as the person who supplied the [skin/hair cells] so risk of rejection would be lower (I think)
This is great feedback, thanks! I added another example based off what you said.
For how obvious the first one, at least two folks I asked (not from this community) didn’t think it was a baby initially (though one is non-native english and didn’t know “2 birds of a feather” and assumed “our company” meant “the singers and their partner”). Neither are parents.
I did select these because they caused confusion in myself when I heard/saw them years ago, but they were “in the wild” instead of in a post on noticing confusion.
I did want a post I could link [non rationalist friends] to that’s a more fun intro to noticing confusion, so more regular members might not benefit!