Well, I’m not exactly an expert either (though next term at uni I’m taking a course on Logic and Set Theory, which will help), but I’m pretty sure this isn’t the same thing as proof-theoretic ordinals.
You see, proofs in formal systems are generally considered to be constrained to have finite length. What I’m trying to talk about here is the construction of metasyntaxes in which, if A1, A2, … are valid derivations (indexed in a natural and canonical way by the finite ordinals), then Aw is a valid derivation for ordinals w smaller than some given ordinal. A nice way to think about this is, in (traditionally-modelled) PA the set of numbers contains the naturals, because for any natural number n, you can construct the n-th iterate of ⁺ (successor) and apply it to 0. However, the set of numbers doesn’t contain w, because to obtain that by successor application, you’d have to construct the w-th iterate of ⁺, and in the usual metasyntax infinite iterates are not allowed.
Higher-order logics are often considered to talk about infinite proofs in lower-order logics (eg. every time you quantify over something infinite, you do something that would take infinite proving in a logic without quantifiers), but they do this in a semantic way, which I as a Syntacticist reject; I am doing it in a syntactic way, considering only the results of transfinitely iterated valid derivations in the low-order logic.
As far as I’m aware, there has not been a great deal of study of metasyntax. It seems to me that (under the Curry-Howard isomorphism) transfinite-iteration metasyntax corresponds to hypercomputation, which is possibly why my kappa is (almost certainly) much, much larger than the Church-Kleene ordinal which (according to Wikipedia, anyway) is a strict upper bound on proof-theoretic ordinals of theories. w₁CK is smaller even than w₁, so I don’t see how it can be larger than kappa.
The fundamental principle of Syntacticism is that the derivations of a formal system are fully determined by the axioms and inference rules of that formal system. By proving that the ordinal kappa is a coherent concept, I prove that PA+kappa is too; thus the derivations of PA+kappa are fully determined and exist-in-Tegmark-space.
Actually it’s not PA+kappa that’s ‘reflectively consistent’; it’s an AI which uses PA+kappa as the basis of its trust in mathematics that’s reflectively consistent, for no matter how many times it rewrites itself, nor how deeply iterated the metasyntax it uses to do the maths by which it decides how to rewrite itself, it retains just as much trust in the validity of mathematics as it did when it started. Attempting to achieve this more directly, by PA+self, runs into Löb’s theorem.