The various Newcombe situations have fairly direct analogues in everyday things like ultimatum situations, or promise keeping. They alter it to reduce the number of variables, so the “certainty of trusting other party” dial gets turned up to 100% of Omega, “expectation of repeat” to 0 etc, in order to evaluate how to think of such problems when we cut out certain factors.
That said, I’m not actually sure what this question has to do with Newcombe’s paradox / counterfactual mugging, or what exactly is interesting about it. If it’s just asking “what information do you use to calculate the probability you plug into the EU calculation?” and Newcombe’s paradox is just being used as one particular example of it, I’d say that the obvious answer is “the probability you believe it is now.” After all, that’s going to already be informed by your past estimates, and any information you have available (such as that community of rationalists and their estimates). If the question is something specific to Newcombe’s paradox, I’m not getting it.
The various Newcombe situations have fairly direct analogues in everyday things like ultimatum situations, or promise keeping. They alter it to reduce the number of variables, so the “certainty of trusting other party” dial gets turned up to 100% of Omega, “expectation of repeat” to 0 etc, in order to evaluate how to think of such problems when we cut out certain factors.
That said, I’m not actually sure what this question has to do with Newcombe’s paradox / counterfactual mugging, or what exactly is interesting about it. If it’s just asking “what information do you use to calculate the probability you plug into the EU calculation?” and Newcombe’s paradox is just being used as one particular example of it, I’d say that the obvious answer is “the probability you believe it is now.” After all, that’s going to already be informed by your past estimates, and any information you have available (such as that community of rationalists and their estimates). If the question is something specific to Newcombe’s paradox, I’m not getting it.