I’m not a physicist, and I couldn’t give a technical explanation of why that won’t work (although I feel like I can grasp an intuitive idea based on how the Uncertainty Principle works to begin with). However, remember the Litany of a Bright Dilettante. You’re not going to spot a trivial means of bypassing a fundamental theory in a field like physics after thinking for five minutes on a blog.
Incidentally, the Uncertainty Principle doesn’t talk about the precision of our possible measurements, per se, but about the actual amplitude distribution for the observable. As you get arbitrarily precise along one of the pair you get arbitrarily spread out along the other, so that the second value is indeterminate even in principle.
I’m not a physicist, and I couldn’t give a technical explanation of why that won’t work (although I feel like I can grasp an intuitive idea based on how the Uncertainty Principle works to begin with). However, remember the Litany of a Bright Dilettante. You’re not going to spot a trivial means of bypassing a fundamental theory in a field like physics after thinking for five minutes on a blog.
Incidentally, the Uncertainty Principle doesn’t talk about the precision of our possible measurements, per se, but about the actual amplitude distribution for the observable. As you get arbitrarily precise along one of the pair you get arbitrarily spread out along the other, so that the second value is indeterminate even in principle.
I didn’t come up with it. It’s called the EPR Paradox.
Neat. Consider my objection retracted. Although I suspect someone with more knowledge of the material could give a better explanation.
I’m going to read the QM sequence now. I have always been confused by descriptions of QM.