I think at this point these feel like empirical questions, which I think would be much more clearly answered by demonstrations or experiments.
Trying to encode an additional penalty on changing non-semantic information is an interesting idea.
However I think you’re missing that you don’t have the ability to directly compare to a reference LM in cases where you’re training to improve on some performance benchmark. During training the model will change its predictions on everything to some degree (both semantic and nonsemantic content).
So your proposed detection will always show some amount of disagreement between the prior and the trained model on weird grammatical patterns as well as conceptual tokens. The question is: “is the difference merely due to the changes to improve performance, or is it also transmitting hidden information”
I think at this point these feel like empirical questions, which I think would be much more clearly answered by demonstrations or experiments.
Trying to encode an additional penalty on changing non-semantic information is an interesting idea.
However I think you’re missing that you don’t have the ability to directly compare to a reference LM in cases where you’re training to improve on some performance benchmark. During training the model will change its predictions on everything to some degree (both semantic and nonsemantic content).
So your proposed detection will always show some amount of disagreement between the prior and the trained model on weird grammatical patterns as well as conceptual tokens. The question is: “is the difference merely due to the changes to improve performance, or is it also transmitting hidden information”