Well, it’s nonequilibrium, so pressure isn’t even at each layer of water any more...
When I picture this happening, there’s a pulse of high-pressure water below the rock. If you froze the rock’s motion while keeping its force on the water below it, I think the pulse would eventually equilibrate out of existence as water flowed to the side? Or if I imagine a fluid with strong drag forces on the rock, but which flows smoothly itself, it again seems plausible that the pressure equilibrates at the bottom.
(More confident in the first para than the second one.)
Thanks! “It’s nonequilibrium” feels like it points at my specific mistake. Apparently my intuitions don’t currently always remember to consider that question.
Well, it’s nonequilibrium, so pressure isn’t even at each layer of water any more...
When I picture this happening, there’s a pulse of high-pressure water below the rock. If you froze the rock’s motion while keeping its force on the water below it, I think the pulse would eventually equilibrate out of existence as water flowed to the side? Or if I imagine a fluid with strong drag forces on the rock, but which flows smoothly itself, it again seems plausible that the pressure equilibrates at the bottom.
(More confident in the first para than the second one.)
Thanks! “It’s nonequilibrium” feels like it points at my specific mistake. Apparently my intuitions don’t currently always remember to consider that question.