“you can’t do infinite number of steps in a finite time”
Well, can you? If some finite period must elapse when a finite distance is covered, an an infinite distance is greater than any finite distance, then the period of time elapsed in crossing an infinite segment must be greater than the period that elapses for crossing any finite segment, and thus also infinite.
I suppose you can also assume that you can cross a finite segment without a finite period of time elapsing—but then what’s to prevent any finite segment of arbitrary length being crossed instantaneously?
What seemed the infinite number of steps to Zeno (and pretty much to everybody else), may be only some finite number of Planck’s lengths to cross in some finite number of Planck’s time units.
(In the fifth century A.D., Indian mathematicians reconciled the doubts of Zeno, using infinite series and those solutions officially still hold. If you want to keep the infinitely divisible space and time, you may do it their way.)
“you can’t do infinite number of steps in a finite time”
Well, can you? If some finite period must elapse when a finite distance is covered, an an infinite distance is greater than any finite distance, then the period of time elapsed in crossing an infinite segment must be greater than the period that elapses for crossing any finite segment, and thus also infinite.
I suppose you can also assume that you can cross a finite segment without a finite period of time elapsing—but then what’s to prevent any finite segment of arbitrary length being crossed instantaneously?
What seemed the infinite number of steps to Zeno (and pretty much to everybody else), may be only some finite number of Planck’s lengths to cross in some finite number of Planck’s time units.
(In the fifth century A.D., Indian mathematicians reconciled the doubts of Zeno, using infinite series and those solutions officially still hold. If you want to keep the infinitely divisible space and time, you may do it their way.)