I wonder if Jaynes’ statement is really true? Here is an example that is on my mind because I’m reading the (thus far) awesome book The Making of the Atomic Bomb. Apologies if I get details wrong:
In the 1930s, there was a lot of work done on neutron bombardment of uranium. At some point, Fermi fired slow moving neutrons at uranium and got a bunch of interesting reaction products that he concluded were most plausibly transuranic elements. I believe he came to this conclusion because the models of the day discounted the hypothesis that a slow moving neutron could do anything but release a “small” particle like a helium nucleus or something and furthermore there was experimental work done to discount the lower elements that were in the vicinity of uranium.
Some weird experimental data by Joliet and Curie which seemed inconsistent with the prevailing model came up later. Hahn and Strassman seemed not to believe their results, and so tried to replicate them and found similar anomalies. A careful chemical analysis of the reaction products of uranium bombardment found elements like barium—much lower on the periodic table. Meitner and Frisch came along and provided a new model which turned out to be right.
So here was data that when analyzed with respect to old models seemed implausible. The data was questioned, but then replicated, studied and then understood. The result was that the old model had to be cast aside for something new. The reason is that the data was incompatible with the model (or at least implausible enough) that a new model needed to be created.
Isn’t this narrative the way knowledge often goes? New data comes along and blows up old ideas because the new data is inconsistent with or implausible in the old model. Does this jibe with Jaynes’ statement?
I wonder if Jaynes’ statement is really true? Here is an example that is on my mind because I’m reading the (thus far) awesome book The Making of the Atomic Bomb. Apologies if I get details wrong:
In the 1930s, there was a lot of work done on neutron bombardment of uranium. At some point, Fermi fired slow moving neutrons at uranium and got a bunch of interesting reaction products that he concluded were most plausibly transuranic elements. I believe he came to this conclusion because the models of the day discounted the hypothesis that a slow moving neutron could do anything but release a “small” particle like a helium nucleus or something and furthermore there was experimental work done to discount the lower elements that were in the vicinity of uranium.
Some weird experimental data by Joliet and Curie which seemed inconsistent with the prevailing model came up later. Hahn and Strassman seemed not to believe their results, and so tried to replicate them and found similar anomalies. A careful chemical analysis of the reaction products of uranium bombardment found elements like barium—much lower on the periodic table. Meitner and Frisch came along and provided a new model which turned out to be right.
So here was data that when analyzed with respect to old models seemed implausible. The data was questioned, but then replicated, studied and then understood. The result was that the old model had to be cast aside for something new. The reason is that the data was incompatible with the model (or at least implausible enough) that a new model needed to be created.
Isn’t this narrative the way knowledge often goes? New data comes along and blows up old ideas because the new data is inconsistent with or implausible in the old model. Does this jibe with Jaynes’ statement?