Practising expressing old interests in a new language:
S=Sform/≤Sf
Sbucket=P(S)
Sform=a:Sbucket,b:Sbucket|numericS(a,b)
pair(a):Sform→Sbucket×Sbucket
numericS(a,b)=∀x(x∈a(∀y≤Sb(pair(x),pair(y)))):Sbucket×Sbucket→Ω
firstborn(a):S→Sform
≤Sf(a,b)=≤Sb(pair(a),pair(b)):Sform×Sform→Ω≤Sb(a,b,c,d)=¬∃x(x∈a∧≤Sn(c,d,x))∧¬∃y(y∈d∧≥Sn(a,b,y)):Sbucket×Sbucket×Sbucket×Sbucket→Ω
≤Sn(c,d,x)=≤Sb(c,d,pair(firstborn(x))):Sbucket×Sbucket×S→Ω
≥Sn(a,b,y)=≤Sb(pair(firstborn(y)),a,b):Sbucket×Sbucket×S→Ω
It is a known system and a terribly recursive one. One can get going by the fact that ∅∈P(A),A∈U
Practising expressing old interests in a new language:
S=Sform/≤Sf
Sbucket=P(S)
Sform=a:Sbucket,b:Sbucket|numericS(a,b)
pair(a):Sform→Sbucket×Sbucket
numericS(a,b)=∀x(x∈a(∀y≤Sb(pair(x),pair(y)))):Sbucket×Sbucket→Ω
firstborn(a):S→Sform
≤Sf(a,b)=≤Sb(pair(a),pair(b)):Sform×Sform→Ω≤Sb(a,b,c,d)=¬∃x(x∈a∧≤Sn(c,d,x))∧¬∃y(y∈d∧≥Sn(a,b,y)):Sbucket×Sbucket×Sbucket×Sbucket→Ω
≤Sn(c,d,x)=≤Sb(c,d,pair(firstborn(x))):Sbucket×Sbucket×S→Ω
≥Sn(a,b,y)=≤Sb(pair(firstborn(y)),a,b):Sbucket×Sbucket×S→Ω
It is a known system and a terribly recursive one. One can get going by the fact that ∅∈P(A),A∈U