As for 4 - even just remembering anything is a self modification of memory.
(1) is not the full situation in this game, it’s always a consequence
From your problem description earlier you said:
If they[Omega] predicted that the agent would leave $1, they put in $100 with 99% probability, otherwise they put in $1.
So some agents do find themselves in 1.), and it’s obviously optimal to take the $1 if you can. FDT is in some sense giving up utility here by using a form of retroactive precomittment, hopefully in exchange for utility on other branches. The earlier decision to precommit (whether actually made or later simulated/hallucinated) sacrifices utility of some future selves in exchange for greater utility to other future selves.
You are about to observe one of [$1, $100] in a transparent box, but you don’t know about it and will know about the rules of this game only when you will already see the box.
So the sequence of events from the agent’s perspective is
A. observe one of [$1,$100] in transparent box (without any context or rules)
B. receive the info about Omega’s predictions
C. decide to take or leave
At the moment A and later the agent has already observed $1 or $100. In universes where they observe $1 at A, then optimal decision at C is to take. In universes where they observe $100 at A, the optimal decision at C is to take.
The FDT move is obviously optimal for 5 only if we measure utility at a point in time before A, when the agent doesn’t know anything about this environment yet (and so could plausibly be in any of an infinite set of alternatives) and we measure only over the subset of universes conditioned on our secret knowledge of the problem setup.
In principle it seems wrong to measure utility at the moment in time right before A on the basis of our knowledge; seems we should only measure it based on the agent’s knowledge. This means we need to sum our expectation over all possibly universes consistent with those facts. The set of universes that proceed to B/C is infinitesimal and probably counter balanced by opposites—so the very claim itself that FDT is optimal for 5 is perhaps a form of pascal’s mugging.
We can also construct more specific variants of 5 where FDT loses—such as environments where the message at step B is from an anti-Omega which punishes FDT like agents.
FDT uses a sort of universal precommitment: from my understanding it’s something like always honor precommitments your past self would have made (if your past self had your current knowledge). Really evaluating whether adopting that universal precommitment pays off seems rather complex. But naturally a powerful EDT agent will simply adopt that universal precommitment if when it believes it is in a universe distribution where doing so is optimal! But that does not imply adopting that precommitment is always everywhere optimal.
We can also construct more specific variants of 5 where FDT loses—such as environments where the message at step B is from an anti-Omega which punishes FDT like agents.
Sudden thought half a year later:
But what if we restrict reasoning to non-embedded agents? So Omegas of all kind have access to a perfect Oracle who can predict what you will do, but can’t actually read yout thoughts and know that you will do it because you use FDT. I doubt that it is possible in this case to construct a similar anti-FDT situation.
As for 4 - even just remembering anything is a self modification of memory.
That’s for humans, not abstract agents? Don’t think it matters, we talk about other self-modifications anyway.
From your problem description
Not mine :)
utility on other branches
Maybe this interpretation is what repels you? Here’s another 2:
You choose to behave like EDT-agent or like FDT-agent in the situations where it matters in advance, before you got into (1) or (3). And you can’t legibly for the predictors like one in this game decide to behave like FDT agent, and then, in the future, when you got into (1) because you’re unlucky, just change your mind. It’s just not an option. And between options “legibly choose to behave like EDT-agent” and “legibly choose to behave like FDT-agent” the second one is clearly better in expectation. You just not make another choice in (1) or (2), it’s already decided.
If you find yourself in (1) or (2) you can’t differentiate between cases “I am real me” and “I am the model of myself inside predictor” (because if you could, you could behave differently in this two cases and it would be bad model and bad predictor). So you decide for both at once. (this interpretation doesn’t work well for afents with explicitly self-indicated values (or how it is called? I hope it’s clear what I mean.))
The earlier decision to precommit (whether actually made or later simulated/hallucinated) sacrifices utility of some future selves in exchange for greater utility to other future selves.
Yes. It’s like choose to win on a 1-5 on a die roll rather then win on a 6. You sacrifice utility if some future selves (in the worlds, when die roll 6) in exchange for greater utility to other future selves, and it’s perfectly rational.
We can also construct more specific variants of 5 where FDT loses—such as environments where the message at step B is from an anti-Omega which punishes FDT like agents.
Ok, yes. You can do it with all other types of agents too.
But naturally a powerful EDT agent will simply adopt that universal precommitment if when it believes it is in a universe distribution where doing so is optimal!
I think the ability to legibly adopt such precommitment and willingness to do so kinda turns EDT-agent into FDT-agent.
I think the ability to legibly adopt such precommitment and willingness to do so kinda turns EDT-agent into FDT-agent.
Yes. I think we are mostly in agreement then. FDT seems to be defined by adopting a form of universal precomitment, which you can only do once and can’t really undo. Seems that EDT can clearly do that (to the extent any agent can adopt FDT), so EDT can always EDT->FDT, but FDT->EDT is not allowed (or it breaks the universal pre-commitment or cooperation across instances) . That does not resolve the question of whether or not adopting FDT is optimal.
My main point from earlier is this:
In principle it seems wrong to measure utility at the moment in time right before A on the basis of our knowledge; seems we should only measure it based on the agent’s knowledge. This means we need to sum our expectation over all possibly universes consistent with those facts. The set of universes that proceed to B/C is infinitesimal and probably counter balanced by opposites—so the very claim itself that FDT is optimal for 5 is perhaps a form of pascal’s mugging.
The agent in scenario 5 before observing the box and the rules is a superposition of all agents in similar scenarios, and it is only correct for us to judge their performance across that entire set—ie according to the agent’s knowledge, not our knowledge. So it’s optimal to take the FDT precomittment in this specific scenario only if it’s optimal to do so over all similar environments, which in this case is nearly all environments as the agent hasn’t observed anything at all at the start of your scenario 5!
So I think this reduces down to the conclusion that FDT and its universal precomittment can’t provide any specific advantage on a specific problem over regular problem-specific precomittments EDT can make, unless it provides a net advantage everywhere across the multiverse, in which case EDT uses that and becomes FDT.
As for 4 - even just remembering anything is a self modification of memory.
From your problem description earlier you said:
So some agents do find themselves in 1.), and it’s obviously optimal to take the $1 if you can. FDT is in some sense giving up utility here by using a form of retroactive precomittment, hopefully in exchange for utility on other branches. The earlier decision to precommit (whether actually made or later simulated/hallucinated) sacrifices utility of some future selves in exchange for greater utility to other future selves.
So the sequence of events from the agent’s perspective is
A. observe one of [$1,$100] in transparent box (without any context or rules)
B. receive the info about Omega’s predictions
C. decide to take or leave
At the moment A and later the agent has already observed $1 or $100. In universes where they observe $1 at A, then optimal decision at C is to take. In universes where they observe $100 at A, the optimal decision at C is to take.
The FDT move is obviously optimal for 5 only if we measure utility at a point in time before A, when the agent doesn’t know anything about this environment yet (and so could plausibly be in any of an infinite set of alternatives) and we measure only over the subset of universes conditioned on our secret knowledge of the problem setup.
In principle it seems wrong to measure utility at the moment in time right before A on the basis of our knowledge; seems we should only measure it based on the agent’s knowledge. This means we need to sum our expectation over all possibly universes consistent with those facts. The set of universes that proceed to B/C is infinitesimal and probably counter balanced by opposites—so the very claim itself that FDT is optimal for 5 is perhaps a form of pascal’s mugging.
We can also construct more specific variants of 5 where FDT loses—such as environments where the message at step B is from an anti-Omega which punishes FDT like agents.
FDT uses a sort of universal precommitment: from my understanding it’s something like always honor precommitments your past self would have made (if your past self had your current knowledge). Really evaluating whether adopting that universal precommitment pays off seems rather complex. But naturally a powerful EDT agent will simply adopt that universal precommitment if when it believes it is in a universe distribution where doing so is optimal! But that does not imply adopting that precommitment is always everywhere optimal.
Sudden thought half a year later:
But what if we restrict reasoning to non-embedded agents? So Omegas of all kind have access to a perfect Oracle who can predict what you will do, but can’t actually read yout thoughts and know that you will do it because you use FDT. I doubt that it is possible in this case to construct a similar anti-FDT situation.
That’s for humans, not abstract agents? Don’t think it matters, we talk about other self-modifications anyway.
Not mine :)
Maybe this interpretation is what repels you? Here’s another 2:
You choose to behave like EDT-agent or like FDT-agent in the situations where it matters in advance, before you got into (1) or (3). And you can’t legibly for the predictors like one in this game decide to behave like FDT agent, and then, in the future, when you got into (1) because you’re unlucky, just change your mind. It’s just not an option. And between options “legibly choose to behave like EDT-agent” and “legibly choose to behave like FDT-agent” the second one is clearly better in expectation. You just not make another choice in (1) or (2), it’s already decided.
If you find yourself in (1) or (2) you can’t differentiate between cases “I am real me” and “I am the model of myself inside predictor” (because if you could, you could behave differently in this two cases and it would be bad model and bad predictor). So you decide for both at once. (this interpretation doesn’t work well for afents with explicitly self-indicated values (or how it is called? I hope it’s clear what I mean.))
Yes. It’s like choose to win on a 1-5 on a die roll rather then win on a 6. You sacrifice utility if some future selves (in the worlds, when die roll 6) in exchange for greater utility to other future selves, and it’s perfectly rational.
Ok, yes. You can do it with all other types of agents too.
I think the ability to legibly adopt such precommitment and willingness to do so kinda turns EDT-agent into FDT-agent.
Yes. I think we are mostly in agreement then. FDT seems to be defined by adopting a form of universal precomitment, which you can only do once and can’t really undo. Seems that EDT can clearly do that (to the extent any agent can adopt FDT), so EDT can always EDT->FDT, but FDT->EDT is not allowed (or it breaks the universal pre-commitment or cooperation across instances) . That does not resolve the question of whether or not adopting FDT is optimal.
My main point from earlier is this:
The agent in scenario 5 before observing the box and the rules is a superposition of all agents in similar scenarios, and it is only correct for us to judge their performance across that entire set—ie according to the agent’s knowledge, not our knowledge. So it’s optimal to take the FDT precomittment in this specific scenario only if it’s optimal to do so over all similar environments, which in this case is nearly all environments as the agent hasn’t observed anything at all at the start of your scenario 5!
So I think this reduces down to the conclusion that FDT and its universal precomittment can’t provide any specific advantage on a specific problem over regular problem-specific precomittments EDT can make, unless it provides a net advantage everywhere across the multiverse, in which case EDT uses that and becomes FDT.