If the entire representation of a complex task or problem is collapsed into a text, reading that text and trying to push further is not really “reasoning across calls”. I expect that you can go further with that, but not much further. At least that’s what it looks like currently.
I don’t think you can learn to solve very specific complex problems with the kind of continuous learning that would be possibly to implement with current models. Some of the theorem-prover papers have continuous learning loops that basically try to do this but those still seem very inefficient and are applied to only highly formalised problems whose solutions can be automatically verified.
If the entire representation of a complex task or problem is collapsed into a text, reading that text and trying to push further is not really “reasoning across calls”. I expect that you can go further with that, but not much further. At least that’s what it looks like currently.
I don’t think you can learn to solve very specific complex problems with the kind of continuous learning that would be possibly to implement with current models. Some of the theorem-prover papers have continuous learning loops that basically try to do this but those still seem very inefficient and are applied to only highly formalised problems whose solutions can be automatically verified.
Yes, multi-modality is not a hard limitation.