Crazy thought, and I doubt this is likely on large scale or it would have been in the news, but any chance this could explain the higher than expected percentage of nurses who have rejected getting the vaccine? Perhaps some have already vaccinated themselves under the radar! And therefore have no need to take the “real” one.
My personal estimate is that the the percentage of nurses who have done this is effectively zero (less than one in a thousand with high probability, less than one in ten thousand with moderate probability.)
Further, those who did do it are likely to have read through the whitepaper, and therefore are also likely to get the commercial vaccine, as it covers different epitopes than the radvac vaccine.
Agree it is extremely unlikely that many nurses have done so, and your probabilities seem quite reasonable. I think the main reason why many nurses have declined the vaccine is social signaling—either to maintain their social status within a mostly anti-vaccine peer group, or to maintain credibility with their anti-vaccine patients, who may be reluctant or outright refuse to be treated by a nurse who has been vaccinated because such a nurse is on “the wrong side” and can no longer be trusted. However, a nurse could self-administer the radvac vaccine and get some protection, while still being able to honestly claim they have no plans to get the commercial vaccines.
I hadn’t read the whitepaper yet before my initial post, and after a quick scan it looks like you are correct that radvac covers different epitopes than the commercial vaccines (I haven’t done my own detailed analysis yet). Are you and others planning to take radvac still planning to get a commercial vaccine once you are eligible?
Yes, I still plan to get the commercial vaccine once it’s available to me (likely some time in august.) As I understand it, the commercial vaccines hit different areas of the virus from the ones that radvac selected, improving protection even further.
There is actually an optional peptide for radvac which does cover one of the same regions as the commercial vaccines. I elected not to include it under the assumption I’d be getting it from the commercial vaccine.
This is a conversation with an MD I recorded which may answer some of the reluctance:
tldr; An untested delivery mode scares an MD to think that neurodegenerative diseases will increase in vaccinated.
I think lipid nanoparticles may have too broad a tropism, far broader even than attenuated virus vaccines (which are still limited to the tropism of the wild-type virus), and thus could pose a uniquely high safety hazard due to cytotoxic attack on the broad cellular range that uptakes the LNPs. Since the LNPs would enter cells via endocytosis, the SARS-CoV-2 epitopes would be expressed on MHC-1 molecules, making them targets of cytotoxic CD8 lymphocytes, attacking a much greater range of cells than any previous vaccine modality. This is concerning in general, but it’s a nightmare scenario if the vaccines are crossing the blood-brain barrier and endocytosing into e.g. oligodendrocytes (multiple sclerosis risk) or motor neurons (which could possibly cause an ALS-type picture). No other vaccine has this broad tropism. That is THE major safety concern here.
1. Because of the anatomy and circulatory trajectory from the deltoid and cephalic vein (essentially a straight shot into the SVC), if enough “spillover LNPs” are getting shuttled into the right atrium and transiting through the pulmonary circulation — which could be high, another reference here for the rich vasculature around IM injection — then one of their earliest stops on the map after exiting the heart would be in tissues serviced by branches of the common carotid and subclavian arteries (including the CNS), enhancing delivery to tissues behind the blood-brain barrier simply due to higher relative concentration at tissue corridors more proximal to the injection site. 2. Even if initial transit through the BBB and into other sensitive tissue parenchyma is relatively low, there’d be a cumulative effect with each booster delivering more spillover LNPs to those non-local sites. 3. Related to that point, the duration of immunity is still unclear, and there seems to be general agreement that while COVID-19 symptoms are reduced with the immunization, viral spread is not. If antibody and memory B/T-cell levels wane within a few months after vaccination, then we’d be looking at repeated boosters possibly multiple times a year given ongoing community dissemination. And since the development of many e.g. CNS disorders is gradual — with subclinical issues taking shape over years before clinical manifestations become apparent (as seen in MS and ALS) — such cumulative damage likely wouldn’t raise red flags at first, but could increase in likelihood with successive boosters.
Given that this vaccine targets a different part of the immune system there’s no good reason to reject an injection vaccine when you take this vaccine.
For the average Less Wrong reader, I tend to agree. But a nurse in an area with a strong, vocal anti-vaccine community may face substantial social pressure to (at least publicly) reject commercial vaccines, for the reasons I stated above.
The average nurse in a anti-vaccine community is not going to make their own vaccines. I would also expect that most nurses will face some social pressure in their workplace to take the vaccine.
This seems prima facie unlikely. If you’re not worried about the risk of side effects from the “real” vaccine, why not just take it, too (since the efficacy of the homemade vaccine is far from certain)?. On the other hand, if you’re the sort of person who worries about the side effects of a vaccine that’s been through clinical trials, you’re probably not the type to brew something up in your kitchen based on a recipe that you got off the internet and snort it.
Crazy thought, and I doubt this is likely on large scale or it would have been in the news, but any chance this could explain the higher than expected percentage of nurses who have rejected getting the vaccine? Perhaps some have already vaccinated themselves under the radar! And therefore have no need to take the “real” one.
I predict that is an overly-optimistic reason for why they’re rejecting the vaccine.
My personal estimate is that the the percentage of nurses who have done this is effectively zero (less than one in a thousand with high probability, less than one in ten thousand with moderate probability.)
Further, those who did do it are likely to have read through the whitepaper, and therefore are also likely to get the commercial vaccine, as it covers different epitopes than the radvac vaccine.
Agree it is extremely unlikely that many nurses have done so, and your probabilities seem quite reasonable. I think the main reason why many nurses have declined the vaccine is social signaling—either to maintain their social status within a mostly anti-vaccine peer group, or to maintain credibility with their anti-vaccine patients, who may be reluctant or outright refuse to be treated by a nurse who has been vaccinated because such a nurse is on “the wrong side” and can no longer be trusted. However, a nurse could self-administer the radvac vaccine and get some protection, while still being able to honestly claim they have no plans to get the commercial vaccines.
I hadn’t read the whitepaper yet before my initial post, and after a quick scan it looks like you are correct that radvac covers different epitopes than the commercial vaccines (I haven’t done my own detailed analysis yet). Are you and others planning to take radvac still planning to get a commercial vaccine once you are eligible?
Yes, I still plan to get the commercial vaccine once it’s available to me (likely some time in august.) As I understand it, the commercial vaccines hit different areas of the virus from the ones that radvac selected, improving protection even further.
There is actually an optional peptide for radvac which does cover one of the same regions as the commercial vaccines. I elected not to include it under the assumption I’d be getting it from the commercial vaccine.
This is a conversation with an MD I recorded which may answer some of the reluctance:
tldr; An untested delivery mode scares an MD to think that neurodegenerative diseases will increase in vaccinated.
I think lipid nanoparticles may have too broad a tropism, far broader even than attenuated virus vaccines (which are still limited to the tropism of the wild-type virus), and thus could pose a uniquely high safety hazard due to cytotoxic attack on the broad cellular range that uptakes the LNPs. Since the LNPs would enter cells via endocytosis, the SARS-CoV-2 epitopes would be expressed on MHC-1 molecules, making them targets of cytotoxic CD8 lymphocytes, attacking a much greater range of cells than any previous vaccine modality. This is concerning in general, but it’s a nightmare scenario if the vaccines are crossing the blood-brain barrier and endocytosing into e.g. oligodendrocytes (multiple sclerosis risk) or motor neurons (which could possibly cause an ALS-type picture). No other vaccine has this broad tropism. That is THE major safety concern here.
1. Because of the anatomy and circulatory trajectory from the deltoid and cephalic vein (essentially a straight shot into the SVC), if enough “spillover LNPs” are getting shuttled into the right atrium and transiting through the pulmonary circulation — which could be high, another reference here for the rich vasculature around IM injection — then one of their earliest stops on the map after exiting the heart would be in tissues serviced by branches of the common carotid and subclavian arteries (including the CNS), enhancing delivery to tissues behind the blood-brain barrier simply due to higher relative concentration at tissue corridors more proximal to the injection site.
2. Even if initial transit through the BBB and into other sensitive tissue parenchyma is relatively low, there’d be a cumulative effect with each booster delivering more spillover LNPs to those non-local sites.
3. Related to that point, the duration of immunity is still unclear, and there seems to be general agreement that while COVID-19 symptoms are reduced with the immunization, viral spread is not. If antibody and memory B/T-cell levels wane within a few months after vaccination, then we’d be looking at repeated boosters possibly multiple times a year given ongoing community dissemination. And since the development of many e.g. CNS disorders is gradual — with subclinical issues taking shape over years before clinical manifestations become apparent (as seen in MS and ALS) — such cumulative damage likely wouldn’t raise red flags at first, but could increase in likelihood with successive boosters.
Given that this vaccine targets a different part of the immune system there’s no good reason to reject an injection vaccine when you take this vaccine.
For the average Less Wrong reader, I tend to agree. But a nurse in an area with a strong, vocal anti-vaccine community may face substantial social pressure to (at least publicly) reject commercial vaccines, for the reasons I stated above.
The average nurse in a anti-vaccine community is not going to make their own vaccines. I would also expect that most nurses will face some social pressure in their workplace to take the vaccine.
This seems prima facie unlikely. If you’re not worried about the risk of side effects from the “real” vaccine, why not just take it, too (since the efficacy of the homemade vaccine is far from certain)?. On the other hand, if you’re the sort of person who worries about the side effects of a vaccine that’s been through clinical trials, you’re probably not the type to brew something up in your kitchen based on a recipe that you got off the internet and snort it.