We are now used to saying that light is both a particle and a wave. We can use that proposition to make all sorts of useful predictions and calculations. But if you stop and really ponder that for a second, you’ll see that it is so far out of the realm of human experience that one cannot “understand” that dual nature in the sense that you “understand” the motion of planets around the sun. “Understanding” in the way I mean is the basis for making accurate analogies and insight. Thus I would argue Kepler was able to use light as an analogy to ‘gravity’ because he understood both (even though he didn’t yet have the math for planetary motion)
Perhaps an even better example is the idea of quantum entanglement: theory may predict, and we may observe quarks “communicating” at a distance faster than light, but (for now at least) I don’t think we have really incorporate it into our (pre-symbolic) conception of the world.
I grant that there is a sense in which we “understand” intuitive physics but will never understand quantum mechanics.
But in a similar sense, I would say that we don’t “understand” almost any of modern mathematics or computer science (or even calculus, or how to play the game of go). We reason about them using a new edifice of intuitions that we have built up over the years to deal with the situation at hands. These intuitions bear some relationship to what has come before but not one as overt as applying intuitions about “waves” to light.
As a computer scientist, I would be quick to characterize this as understanding! Moreover, even if a machine’s understanding of quantum mechanics is closer to our idea of intuitive physics (in that they were built to reason about quantum mechanics in the same way we were built to reason about intuitive physics) I’m not sure this gives them more than a quantitative advantage in the efficiency with which they can think about the topic.
I do expect them to have such advantages, but I don’t expect them to be limited to topics that are at the edge of humans’ conceptual grasp!
I think robots will have far more trouble understanding fine nuances of language, behavior, empathy, and team work. I think quantum mechanics will be easy overall. Its things like emotional intelligence that will be hard.
The apparent mystery in particle-wave dualism is simply an artifact of using bad categories. It is a misleading historical accident that we hear things like “light is both a particle and a wave” in quantum physics lectures. Really what teachers should be saying is that ‘particle’ and ‘wave’ are both bad ways of conceptualizing the nature of microscopic entities. It turns out that the correct representation of these entities is neither as particles nor as waves, traditionally construed, but as quantum states (which I think can be understood reasonably well, although there are of course huge questions regarding the probabilistic nature of observed outcomes). It turns out that in certain experiments quantum states produce outcomes similar to what we would expect from particles, and in other experiments they produce outcomes similar to what we would expect from waves, but that is surely not enough to declare that they are both particles and waves.
I do agree with you that entanglement is a bigger conceptual hurdle.
I’ll take a stab at it.
We are now used to saying that light is both a particle and a wave. We can use that proposition to make all sorts of useful predictions and calculations. But if you stop and really ponder that for a second, you’ll see that it is so far out of the realm of human experience that one cannot “understand” that dual nature in the sense that you “understand” the motion of planets around the sun. “Understanding” in the way I mean is the basis for making accurate analogies and insight. Thus I would argue Kepler was able to use light as an analogy to ‘gravity’ because he understood both (even though he didn’t yet have the math for planetary motion)
Perhaps an even better example is the idea of quantum entanglement: theory may predict, and we may observe quarks “communicating” at a distance faster than light, but (for now at least) I don’t think we have really incorporate it into our (pre-symbolic) conception of the world.
I grant that there is a sense in which we “understand” intuitive physics but will never understand quantum mechanics.
But in a similar sense, I would say that we don’t “understand” almost any of modern mathematics or computer science (or even calculus, or how to play the game of go). We reason about them using a new edifice of intuitions that we have built up over the years to deal with the situation at hands. These intuitions bear some relationship to what has come before but not one as overt as applying intuitions about “waves” to light.
As a computer scientist, I would be quick to characterize this as understanding! Moreover, even if a machine’s understanding of quantum mechanics is closer to our idea of intuitive physics (in that they were built to reason about quantum mechanics in the same way we were built to reason about intuitive physics) I’m not sure this gives them more than a quantitative advantage in the efficiency with which they can think about the topic.
I do expect them to have such advantages, but I don’t expect them to be limited to topics that are at the edge of humans’ conceptual grasp!
I think robots will have far more trouble understanding fine nuances of language, behavior, empathy, and team work. I think quantum mechanics will be easy overall. Its things like emotional intelligence that will be hard.
The apparent mystery in particle-wave dualism is simply an artifact of using bad categories. It is a misleading historical accident that we hear things like “light is both a particle and a wave” in quantum physics lectures. Really what teachers should be saying is that ‘particle’ and ‘wave’ are both bad ways of conceptualizing the nature of microscopic entities. It turns out that the correct representation of these entities is neither as particles nor as waves, traditionally construed, but as quantum states (which I think can be understood reasonably well, although there are of course huge questions regarding the probabilistic nature of observed outcomes). It turns out that in certain experiments quantum states produce outcomes similar to what we would expect from particles, and in other experiments they produce outcomes similar to what we would expect from waves, but that is surely not enough to declare that they are both particles and waves.
I do agree with you that entanglement is a bigger conceptual hurdle.