Is this another variation of the theme that one needs to assume the possibility of inductive reasoning to make an argument for it (or also assume Occam’s Razor to argue for it)? Also, the specific example he gave seems to me like an instance of “given very skewed data, the best guesses are still wrong” (there was sometime a variation of that here, regarding bets and opponents who have superior information). Or are you thinking of something for subtle?
Even if you assume that we can do induction (and assume faithfulness!), conditional independence tests simply do not select among causal models. They select among statistical models, because conditional independences are properties of joint distributions (statistical, rather than causal objects). Linking those joint distributions with something causal relies on causal assumptions.
I think the biggest lesson to learn from Pearl’s book is to keep statistical and causal notions separate.
Is this another variation of the theme that one needs to assume the possibility of inductive reasoning to make an argument for it (or also assume Occam’s Razor to argue for it)? Also, the specific example he gave seems to me like an instance of “given very skewed data, the best guesses are still wrong” (there was sometime a variation of that here, regarding bets and opponents who have superior information). Or are you thinking of something for subtle?
Even if you assume that we can do induction (and assume faithfulness!), conditional independence tests simply do not select among causal models. They select among statistical models, because conditional independences are properties of joint distributions (statistical, rather than causal objects). Linking those joint distributions with something causal relies on causal assumptions.
I think the biggest lesson to learn from Pearl’s book is to keep statistical and causal notions separate.
Thanks for clarifying!