Good points, however I’m still a bit confused about the difference between two different scenarios: “multiple sub-agents” vs “a single sub-agent that can use tools” (or can use oracle sub-agents that don’t have their own goals).
For example a human doing protein folding using alpha-fold; I don’t think of that as multiple sub-agents, just a single agent using an AI tool for a specialised task (protein folding). (Assuming for now that we can treat a human as a single agent, which isn’t really the case, but you can imagine a coherent agent using alpha-fold as a tool).
It still seems plausible to me that you might have a mind made of many different parts, but there is a clear “agent” bit that actually has goals and is controlling all the other parts.
It still seems plausible to me that you might have a mind made of many different parts, but there is a clear “agent” bit that actually has goals and is controlling all the other parts.
I suppose I can imagine an architecture that has something like a central planning agent that is capable of having a goal, observing the state of the world to check if the goal had been met, coming up with high level strategies to meet that goal, then delegating subtasks to a set of subordinate sub-agents (whilst making sure that these tasks are broken down enough that the sub-agents themselves don’t have to do much long time-horizon planning or goal directed behaviour).
With this architecture it seems like all the agent-y goal-directed stuff is done by a single central agent.
However I do agree that this may be less efficient or capable in practice than an architecture with more autonomous, decentralised sub-agents. But on the other hand it might be better at more consistently pursuing a stable goal, so that could compensate.
Good points, however I’m still a bit confused about the difference between two different scenarios: “multiple sub-agents” vs “a single sub-agent that can use tools” (or can use oracle sub-agents that don’t have their own goals).
For example a human doing protein folding using alpha-fold; I don’t think of that as multiple sub-agents, just a single agent using an AI tool for a specialised task (protein folding). (Assuming for now that we can treat a human as a single agent, which isn’t really the case, but you can imagine a coherent agent using alpha-fold as a tool).
It still seems plausible to me that you might have a mind made of many different parts, but there is a clear “agent” bit that actually has goals and is controlling all the other parts.
What would that look like in practice?
I suppose I can imagine an architecture that has something like a central planning agent that is capable of having a goal, observing the state of the world to check if the goal had been met, coming up with high level strategies to meet that goal, then delegating subtasks to a set of subordinate sub-agents (whilst making sure that these tasks are broken down enough that the sub-agents themselves don’t have to do much long time-horizon planning or goal directed behaviour).
With this architecture it seems like all the agent-y goal-directed stuff is done by a single central agent.
However I do agree that this may be less efficient or capable in practice than an architecture with more autonomous, decentralised sub-agents. But on the other hand it might be better at more consistently pursuing a stable goal, so that could compensate.