Um… the definition of the normal form game you cited explicitly says that the payoffs are in the form of cardinal or ordinal utilities. Which is distinct from in-game payouts.
Also, too, it sounds like you agree that the strategy your counterparty uses can make a normal form game not count as a “stag hunt” or “prisoner’s dillema” or “dating game”
the definition of the normal form game you cited explicitly says that the payoffs are in the form of cardinal or ordinal utilities. Which is distinct from in-game payouts.
No. In that article, the only spot where ‘utility’ appears is identifying utility with the player’s payoffs/payouts. (EDIT: but perhaps I don’t get what you mean by ‘in-game payouts’?)
that player’s set of payoffs (normally the set of real numbers, where the number represents a cardinal or ordinal utility—often cardinal in the normal-form representation)
To reiterate: I’m not talking about VNM-utility, derived by taking a preference ordering-over-lotteries and back out a coherent utility function. I’m talking about the players having payoff functions which cardinally represent the value of different outcomes. We can call the value-units “squiggles”, or “utilons”, or “payouts”; the OP’s question remains.
Also, too, it sounds like you agree that the strategy your counterparty uses can make a normal form game not count as a “stag hunt” or “prisoner’s dillema” or “dating game”
Um… the definition of the normal form game you cited explicitly says that the payoffs are in the form of cardinal or ordinal utilities. Which is distinct from in-game payouts.
Also, too, it sounds like you agree that the strategy your counterparty uses can make a normal form game not count as a “stag hunt” or “prisoner’s dillema” or “dating game”
No. In that article, the only spot where ‘utility’ appears is identifying utility with the player’s payoffs/payouts. (EDIT: but perhaps I don’t get what you mean by ‘in-game payouts’?)
To reiterate: I’m not talking about VNM-utility, derived by taking a preference ordering-over-lotteries and back out a coherent utility function. I’m talking about the players having payoff functions which cardinally represent the value of different outcomes. We can call the value-units “squiggles”, or “utilons”, or “payouts”; the OP’s question remains.
No, I don’t agree with that.