The bigger issue is that the stronger genetic modifications requires children at all, and this time still matters even under optimistic circumstances of how much we can cut the maturity process away, and there’s a far greater problem with this type of modification:
It only works if we assume population growth or life extension, and one is a huge challenge in itself, and the population growth assumptions is probably wrong, and the big problem here is the fertility rate is essentially way down from several decades ago or several centuries ago, and this is a big problem, as it sinks schemes of intelligence augmentation that rely on new children. In particular, the world population will stop growing, and we might only have 30 billion new humans born, according to new models.
So yeah, I am still pessimistic around gamete genetic strategies for human enhancement.
The population growth problem should be somewhat addressed by healthspan extension. A big reason as to why people aren’t having kids now is that they lack the resources—be it housing, money, or time. If we could extend the average healthspan by a few decades, then older people who have spent enough time working to accumulate those resources, but are too old to raise children, should now be able have kids. Moreover, it means that people who are already have many kids but have just become too old will also be able to have more. For those reasons, I don’t think a future birth limit of 30 billion is particularly reasonable.
However, I don’t think it will make a difference, at least for addressing AI. Once computing reaches a certain level of advancement, it will simply be unfeasible for something the size of a human brain, no matter how enhanced, to compete with a superintelligence running on a supercomputer the size of a basketball court. And that level of computing/AI advancement will almost certainly be achieved before the discussed genetic enhancement will ever bear fruit, probably even before it’s made legal. Moreover, it’s doubtful we’ll see any significant healthspan extensions particularly long before achieving ASI, so that makes it even less relevant, although I don’t think any of these concerns were particularly significant in the first place as it also seems like we’ll see ASI long before global population decline.
The bigger issue is that the stronger genetic modifications requires children at all, and this time still matters even under optimistic circumstances of how much we can cut the maturity process away, and there’s a far greater problem with this type of modification:
It only works if we assume population growth or life extension, and one is a huge challenge in itself, and the population growth assumptions is probably wrong, and the big problem here is the fertility rate is essentially way down from several decades ago or several centuries ago, and this is a big problem, as it sinks schemes of intelligence augmentation that rely on new children. In particular, the world population will stop growing, and we might only have 30 billion new humans born, according to new models.
So yeah, I am still pessimistic around gamete genetic strategies for human enhancement.
The population growth problem should be somewhat addressed by healthspan extension. A big reason as to why people aren’t having kids now is that they lack the resources—be it housing, money, or time. If we could extend the average healthspan by a few decades, then older people who have spent enough time working to accumulate those resources, but are too old to raise children, should now be able have kids. Moreover, it means that people who are already have many kids but have just become too old will also be able to have more. For those reasons, I don’t think a future birth limit of 30 billion is particularly reasonable.
However, I don’t think it will make a difference, at least for addressing AI. Once computing reaches a certain level of advancement, it will simply be unfeasible for something the size of a human brain, no matter how enhanced, to compete with a superintelligence running on a supercomputer the size of a basketball court. And that level of computing/AI advancement will almost certainly be achieved before the discussed genetic enhancement will ever bear fruit, probably even before it’s made legal. Moreover, it’s doubtful we’ll see any significant healthspan extensions particularly long before achieving ASI, so that makes it even less relevant, although I don’t think any of these concerns were particularly significant in the first place as it also seems like we’ll see ASI long before global population decline.