Thanks for the detailed response. Meta: It feels good to receive a signal that this was a ‘neat question’, or in general, a positive-seeming contribution to LW. I have several unexpressed thoughts from fear of not actually creating value for the community.
it sounds like what you want is a reward function that is simple, but somehow analogous to the complexity of human value? And it sounds like maybe the underspecified bit is “you, as a human, have some vague notion that some sorts of value-generation are ‘cheating’”, and your true goal is “the most interesting outcome that doesn’t feel like Somehow Cheating to me?”
This is about correct. A secondary reason for simplicity is to attempt to be computationally efficient (for the environment that generates the reward).
“one cell == an atom”
I can see that as being a case, but, again, computational tractability. Actual interesting structures in GoL can be incredibly massive, for example, this Tetris Proccessor (2,940,928 x 10,295,296 cells). Maybe there’s some middle ground between truly fascinating GoL patterns made from atoms and my cell-as-a-planet level abstraction, as suggested by Daniel Kokotajlo in another comment.
How ‘good’ is it to have a repeating loop of, say, a billion flourishing human lives? Is it better than a billion human lives that happens exactly once and ends?
Wouldn’t most argue that, in general, more life is better than less life? (but I see some of my hidden assumptions here, such as “the ’life’s we’re talking about here are qualitatively similar e.g. the repeating life doesn’t feel trapped/irrelevant/futile because it is aware that it is repeating”)
I think “moral value” (or, “value”) in real life is about the process of solving “what is valuable and how to do I get it?”
I don’t disagree, but I also think this is sort of outside the scope of finite-space cellular automata.
In this case it might mean that the system optimizes either for true continuous novelty, or the longest possible loop?
Given the constraints of CA, I’m mostly in agreement with this suggestion. Thanks.
I do suspect that figuring out which of your assumptions are “valid” is an important part of the question here.
Yes, I agree. Concretely, to me it looks like ‘if I saw X happening in GoL, and I imagine being a sentient being (at some scale, TBD) in that world (well, with my human values), then would I want to live in it?’, and translating that into some rules that promote or disincentivise X.
I do think taking this approach is broadly difficult, though. Perhaps its worth getting a v0.1 out with reward being tied to instantiations of novel states to begin with, and then seeing whether to build on that or try a new approach.
Thanks for the detailed response. Meta: It feels good to receive a signal that this was a ‘neat question’, or in general, a positive-seeming contribution to LW. I have several unexpressed thoughts from fear of not actually creating value for the community.
This is about correct. A secondary reason for simplicity is to attempt to be computationally efficient (for the environment that generates the reward).
I can see that as being a case, but, again, computational tractability. Actual interesting structures in GoL can be incredibly massive, for example, this Tetris Proccessor (2,940,928 x 10,295,296 cells). Maybe there’s some middle ground between truly fascinating GoL patterns made from atoms and my cell-as-a-planet level abstraction, as suggested by Daniel Kokotajlo in another comment.
Wouldn’t most argue that, in general, more life is better than less life? (but I see some of my hidden assumptions here, such as “the ’life’s we’re talking about here are qualitatively similar e.g. the repeating life doesn’t feel trapped/irrelevant/futile because it is aware that it is repeating”)
I don’t disagree, but I also think this is sort of outside the scope of finite-space cellular automata.
Given the constraints of CA, I’m mostly in agreement with this suggestion. Thanks.
Yes, I agree. Concretely, to me it looks like ‘if I saw X happening in GoL, and I imagine being a sentient being (at some scale, TBD) in that world (well, with my human values), then would I want to live in it?’, and translating that into some rules that promote or disincentivise X.
I do think taking this approach is broadly difficult, though. Perhaps its worth getting a v0.1 out with reward being tied to instantiations of novel states to begin with, and then seeing whether to build on that or try a new approach.
Ah, if computational tractability is a key constraint that makes lots of sense.