I think the construction gives us $C(\pi) \leq C(U) + e$ for a small constant $e$ (representing the wrapper). It seems like any compression you can apply to the reward function can be translated to the policy via the wrapper. So then you would never have $C(\pi) >> C(U)$. What am I missing/misunderstanding?
For the contrived reward function you suggested, we would never have C(π)≫C(U). But for other reward functions, it is possible that C(π)≫C(U). Which is exactly why this framework rejects the contrived reward function in favor of those other reward functions. And also why this framework considers some policies unintelligent (despite the availability of the contrived reward function) and other policies intelligent.
I think the construction gives us $C(\pi) \leq C(U) + e$ for a small constant $e$ (representing the wrapper). It seems like any compression you can apply to the reward function can be translated to the policy via the wrapper. So then you would never have $C(\pi) >> C(U)$. What am I missing/misunderstanding?
For the contrived reward function you suggested, we would never have C(π)≫C(U). But for other reward functions, it is possible that C(π)≫C(U). Which is exactly why this framework rejects the contrived reward function in favor of those other reward functions. And also why this framework considers some policies unintelligent (despite the availability of the contrived reward function) and other policies intelligent.