Sure. But what’s interesting to me here is the implication that, if you restrict yourself to programs below some maximum length, weighing them uniformly apparently works perfectly fine and barely differs from Solomonoff induction at all.
This resolves a remaining confusion I had about the connection between old school information theory and SLT. It apparently shows that a uniform prior over parameters (programs) of some fixed size parameter space is basically fine, actually, in that it fits together with what algorithmic information theory says about inductive inference.
Sure. But what’s interesting to me here is the implication that, if you restrict yourself to programs below some maximum length, weighing them uniformly apparently works perfectly fine and barely differs from Solomonoff induction at all.
This resolves a remaining confusion I had about the connection between old school information theory and SLT. It apparently shows that a uniform prior over parameters (programs) of some fixed size parameter space is basically fine, actually, in that it fits together with what algorithmic information theory says about inductive inference.