I assume you’re familiar with the case of the parallel postulate in classical geometry as being independent of other axioms? Where that independence corresponds with the existence of spherical/hyperbolic geometries (i.e. actual models in which the axiom is false) versus normal flat Euclidean geometry (i.e. actual models in which it is true).
To me, this is a clear example of there being no such thing as an “objective” truth about the the validity of the parallel postulate—you are entirely free to assume either it or incompatible alternatives. You end up with equally valid theories, it’s just those theories are applicable to different models, and those models are each useful in different situations, so the only thing it comes down to is which models you happen to be wanting to use or explore or prove things about on a given day.
Similarly for the huge variety of different algebraic or topological structures (groups, ordered fields, manifolds, etc) - it is extremely common to have statements that are independent of the axioms, e.g. in a ring it is independent of the axioms whether multiplication is commutative or not. And both choices are valid. We have commutative rings, and we have noncommutative rings, and both are self-consistent mathematical structures that one might wish to study.
Loosely analogous to how one can write a compiler/interpreter for a programming language within other programming languages, some theories can easily simulate other theories. Set theories are particularly good and convenient for simulating other theories, but one can also simulate set theories within other seemingly more “primitive” theories (e.g. simulating it in theories of basic arithmetic via Godel numbering). This might be analogous to e.g. someone writing a C compiler in Brainfuck. Just like how it’s meaningless to talk about whether a programming language or a given sub-version or feature extension of a programming language is more “objectively true” than another, there are many who take the position that the same holds for different set theories.
When you say you’re “leaning towards a view that maintains objective mathematical truth” with respect to certain axioms, is there some fundamental principle by which you’re discriminating the axioms that you want to assign objective truth from axioms like the parallel postulate or the commutativity of rings, which obviously have no objective truth? Or do you think that even in these latter cases there is still an objective truth?
To me, this is a clear example of there being no such thing as an “objective” truth about the the validity of the parallel postulate—you are entirely free to assume either it or incompatible alternatives. You end up with equally valid theories, it’s just those theories are applicable to different models
This is true, but there’s an important caveat: Mathematicians accepted Euclidean geometry long before they accepted non-Euclidean geometry, because they took it to be intuitively evident that a model of Euclid’s axioms existed, whereas the existence of models of non-Euclidean geometry was AFAIK regarded as non-obvious until such models were constructed within a metatheory assuming Euclidean space.
From the perspective of modern foundations, it’s not so important to pick one kind of geometry as fundamental and use it to construct models of other geometries, because we now know how to construct models of all the classical geometries within more fundamental foundational theories such as arithmetic or set theory. But OP was asking about incompatible variants of the axioms of set theory. We don’t have a more fundamental theory than set theory in which to construct models of different set theories, so we instead assume a model of set theory and then construct models of other set theories within it.
For example, one can replace the axiom of foundation of ZFC with axioms of anti-foundation postulating the existence of all sorts of circular or infinitely regressing chains of membership relations between sets. One can construct models of non-well-founded set theories within well-founded set theories and vice versa, but I don’t know of anyone who claims that therefore both kinds of set theory are equally valid as foundations. The existence of models of well-founded set theories is natural to assume as a foundation, whereas the existence of models satisfying strong anti-foundation axioms is not intuitively obvious and is therefore treated as a theorem rather than an axiom, the same way non-Euclidean geometry was historically.
Set theories are particularly good and convenient for simulating other theories, but one can alsosimulate set theories within other seemingly more “primitive” theories (e.g. simulating it in theories of basic arithmetic via Godel numbering).
Yes, there are ways of interpreting ZFC in a theory of natural numbers or other finite objects. What there is not, however, is any known system of intuitively obvious axioms about natural numbers or other finite objects, which makes no appeal to intuitions about infinite objects, and which is strong enough to prove that such an interpretation of ZFC exists (and therefore that ZFC is consistent). I don’t think any way of reducing the consistency of ZFC to intuitively obvious axioms about finite objects will ever be found, and if I live to see a day when I’m proved wrong about that, I would regard it as the greatest discovery in the foundations of math since the incompleteness theorems.
I assume you’re familiar with the case of the parallel postulate in classical geometry as being independent of other axioms? Where that independence corresponds with the existence of spherical/hyperbolic geometries (i.e. actual models in which the axiom is false) versus normal flat Euclidean geometry (i.e. actual models in which it is true).
To me, this is a clear example of there being no such thing as an “objective” truth about the the validity of the parallel postulate—you are entirely free to assume either it or incompatible alternatives. You end up with equally valid theories, it’s just those theories are applicable to different models, and those models are each useful in different situations, so the only thing it comes down to is which models you happen to be wanting to use or explore or prove things about on a given day.
Similarly for the huge variety of different algebraic or topological structures (groups, ordered fields, manifolds, etc) - it is extremely common to have statements that are independent of the axioms, e.g. in a ring it is independent of the axioms whether multiplication is commutative or not. And both choices are valid. We have commutative rings, and we have noncommutative rings, and both are self-consistent mathematical structures that one might wish to study.
Loosely analogous to how one can write a compiler/interpreter for a programming language within other programming languages, some theories can easily simulate other theories. Set theories are particularly good and convenient for simulating other theories, but one can also simulate set theories within other seemingly more “primitive” theories (e.g. simulating it in theories of basic arithmetic via Godel numbering). This might be analogous to e.g. someone writing a C compiler in Brainfuck. Just like how it’s meaningless to talk about whether a programming language or a given sub-version or feature extension of a programming language is more “objectively true” than another, there are many who take the position that the same holds for different set theories.
When you say you’re “leaning towards a view that maintains objective mathematical truth” with respect to certain axioms, is there some fundamental principle by which you’re discriminating the axioms that you want to assign objective truth from axioms like the parallel postulate or the commutativity of rings, which obviously have no objective truth? Or do you think that even in these latter cases there is still an objective truth?
This is true, but there’s an important caveat: Mathematicians accepted Euclidean geometry long before they accepted non-Euclidean geometry, because they took it to be intuitively evident that a model of Euclid’s axioms existed, whereas the existence of models of non-Euclidean geometry was AFAIK regarded as non-obvious until such models were constructed within a metatheory assuming Euclidean space.
From the perspective of modern foundations, it’s not so important to pick one kind of geometry as fundamental and use it to construct models of other geometries, because we now know how to construct models of all the classical geometries within more fundamental foundational theories such as arithmetic or set theory. But OP was asking about incompatible variants of the axioms of set theory. We don’t have a more fundamental theory than set theory in which to construct models of different set theories, so we instead assume a model of set theory and then construct models of other set theories within it.
For example, one can replace the axiom of foundation of ZFC with axioms of anti-foundation postulating the existence of all sorts of circular or infinitely regressing chains of membership relations between sets. One can construct models of non-well-founded set theories within well-founded set theories and vice versa, but I don’t know of anyone who claims that therefore both kinds of set theory are equally valid as foundations. The existence of models of well-founded set theories is natural to assume as a foundation, whereas the existence of models satisfying strong anti-foundation axioms is not intuitively obvious and is therefore treated as a theorem rather than an axiom, the same way non-Euclidean geometry was historically.
Yes, there are ways of interpreting ZFC in a theory of natural numbers or other finite objects. What there is not, however, is any known system of intuitively obvious axioms about natural numbers or other finite objects, which makes no appeal to intuitions about infinite objects, and which is strong enough to prove that such an interpretation of ZFC exists (and therefore that ZFC is consistent). I don’t think any way of reducing the consistency of ZFC to intuitively obvious axioms about finite objects will ever be found, and if I live to see a day when I’m proved wrong about that, I would regard it as the greatest discovery in the foundations of math since the incompleteness theorems.